Effective Value of Weak Axial Coupling: A Review · 2018-06-26 · Effective Value of Weak Axial...

Post on 11-Jul-2020

0 views 0 download

transcript

Effective Value of Weak Axial Coupling: A Review

Jouni Suhonen

Department of Physics, University of Jyväskylä

NDM2018 (6th Symposium on Neutrinos and Dark Matter inNuclear Physics 2018)

Daejeon, South Korea, June 29 - July 4, 2018

Contents:

Double-beta-decay rates

Effective value of gA:

from allowed β Decays

from forbidden β Decays

Effects on 0νββ NMEs

Is there any reactor-ν anomaly?

Jouni Suhonen (JYFL, Finland) NDM2018 1 / 34

Motivation for the Work: Double Beta Decay

Jouni Suhonen (JYFL, Finland) NDM2018 2 / 34

Two-Neutrino Double Beta Decay of 116Cd

11648Cd68

0+gs

(8.25± 0.15)× 1019 a

t1/2(2νβ−β−) =

1+gs 11649In67

0+gs11650Sn66

stable2νβ−β−

1+1+1+1+1+1+1+

...

n n

p p

(Z,N-2)

(Z,N-2)

INTERMEDIATE STATES

INITIAL NUCLEUS

FINAL NUCLEUS

e1-

1

e2-

2

2νββ − rate ∼∣

∣M

(2ν)GTGT

2= (gA)

4∣

m,nML(1+m )MR(1+n )

Dm

2

Jouni Suhonen (JYFL, Finland) NDM2018 3 / 34

Neutrinoless Double Beta Decay of 116Cd

11648Cd68

0+gs

1+gs 11649In67

0+gs11650Sn66

stable0νβ−β−

5+isom

4+2+

8−isom4+7−

6−4+5−

3+4−

2−7+

...

MASS MODE

n n

p p

(Z,N-2)

(Z,N-2)

INTERMEDIATE STATES

INITIAL NUCLEUS

FINAL NUCLEUS

e1-

e2-

L=2

helicities

helicities

m =0

0νββ − rate ∼∣

∣M

(0ν)GTGT

2= (gA,0ν)

4∣

Jπ (0+f ||O

(0ν)GTGT(J

π)||0+i )

2

Jouni Suhonen (JYFL, Finland) NDM2018 4 / 34

Definitions

See also: “Value of the axial-vector coupling strength in β and ββ decays: A review”published in Frontiers in Physics 5 (2017) 55.

Nucleon weak current in a nucleus:

jµN = gVγµ − gAγ

µγ5

Quenching:

q = gA/gfreeA

Free value of gA (Particle Data Group 2016) from the decay of free neutron:

gfreeA = 1.2723(23)

Effective value of gA:

geffA = qgfree

A

Jouni Suhonen (JYFL, Finland) NDM2018 5 / 34

Gamow-Teller β decays

There are data on:

Gamow-Teller β

TRANSITIONS

Theoretical approaches:

ISM (Interacting Shell Model)pnQRPA (proton-neutron QRPA)

Jouni Suhonen (JYFL, Finland) NDM2018 6 / 34

Typical Gamow-Teller β transitions

10040Zr60

0+gs

ML

1+gs10041Nb59

0+gs10042Mo58

stable

MR

10041Nb59

1+gs

ML

0+gs10042Mo58

1+gs10043Tc57MR

10042Mo58

0+gs

ML

1+gs10043Tc57

0+gs10044Ru56

stable

MR

Jouni Suhonen (JYFL, Finland) NDM2018 7 / 34

Interacting Shell Model (ISM)

Results from:

Quenching of gA

in the ISM calculations

Jouni Suhonen (JYFL, Finland) NDM2018 8 / 34

Results from the ISMg A

A

60 70 80 90 100 110 120 130 1400.0

0.5

1.0

gfreeA

Honma et al.

Caurier et al.

Juodagalvis et al.

Siiskonen et al.

Kumar et al. Horoi et al.

Kumar et al.: J. Phys. G43 (2016) 105104

Honma et al.: J. Phys.Conf. Ser. 49 (2006) 45

Caurier et al.: Phys.Lett. B 711 (2012) 62

Horoi et al.: Phys. Rev.C 93 (2016) 024308

Juodagalvis et al.:Phys. Rev. C 72 (2005)024306

Siiskonen et al.: Phys.Rev. C 63 (2001)055501

Jouni Suhonen (JYFL, Finland) NDM2018 9 / 34

Proton-neutron Quasiparticle Random-PhaseApproximation (pnQRPA)

Results from:

Quenching of gA

in the pnQRPA calculations

Jouni Suhonen (JYFL, Finland) NDM2018 10 / 34

Results from the pnQRPA analyses

A pn Conf. geffA [1]

62 − 70 1p3/2 − 1p1/2 0.81 ± 0.2078 − 82 0g9/2 − 0g9/2 0.88 ± 0.1298 − 116 0g9/2 − 0g7/2 0.53 ± 0.13

118 − 136 1d5/2 − 1d5/2 0.65 ± 0.17138 − 142 1d5/2 − 1d3/2 1.14 ± 0.10

[1] H. Ejiri, J. S., J. Phys. G 42 (2015)

055201

Other analyses in the whole range:

[2] P. Pirinen, J. S., Phys. Rev. C 91

(2015) 054309

[3] F. Deppisch, J. S., Phys. Rev. C 94

(2016) 055501

g A

A

60 70 80 90 100 110 120 130 1400.0

0.5

1.0

Ejiri et al. (2015)

Whole pnQRPA range

gfreeA

linear fit

fundamental effective value

Fundamental quenching: M. Ericson (1971); M. Ericson et al. (1973);M. Rho (1974); D. H. Wilkinson (1974)

(Meson-exchange currents → effective two-body operators)

Jouni Suhonen (JYFL, Finland) NDM2018 11 / 34

Results from the ISM on top of the pnQRPA rangesg A

A

60 70 80 90 100 110 120 130 1400.0

0.5

1.0

gfreeA

Honma et al.

Caurier et al.

Juodagalvis et al.

Siiskonen et al.

Kumar et al. Horoi et al.

Kumar et al.: J. Phys. G43 (2016) 105104

Honma et al.: J. Phys.Conf. Ser. 49 (2006) 45

Caurier et al.: Phys.Lett. B 711 (2012) 62

Horoi et al.: Phys. Rev.C 93 (2016) 024308

Juodagalvis et al.:Phys. Rev. C 72 (2005)024306

Siiskonen et al.: Phys.Rev. C 63 (2001)055501

Jouni Suhonen (JYFL, Finland) NDM2018 12 / 34

Calculations for the β decays and ββ decays

Results from:

Quenching of gA

in the pnQRPA-based,

ISM-based andIBM-based calculations

of β decays and ββ decays

Jouni Suhonen (JYFL, Finland) NDM2018 13 / 34

The studied cases

10042Mo580+

gs

1+gs

10043Tc57

0+gs

10044Ru56

4.4

4.59(7.1± 0.4)× 1018y

11648Cd680+

gs

1+gs

11649In67

0+gs

11650Sn66

4.47

4.662(2.8± 0.2)× 1019y

12852Te760+

gs

1+gs

12853I75

0+gs

12854Xe74

5.049

6.061(1.9± 0.4)× 1024y

Jouni Suhonen (JYFL, Finland) NDM2018 14 / 34

Results from the β+ββ calculations against thepnQRPA ranges from Gamow-Teller β decays

g A

A

60 70 80 90 100 110 120 130 1400.0

0.5

1.0

gfreeA

β

β

β

ββ

ββ

ββ

IBFFM-2

Faessler et al.

Suhonen et al. (β)

Suhonen et al. (ββ)

ββ IBM-2

ββ ISM

pnQRPA: Faessler et al.,A. Faessler, G. L. Fogli, E.Lisi, V. Rodin, A. M.Rotunno, F. Šimkovic,arXiv 0711.3996v1[Nucl-th]

pnQRPA: Suhonen et al.,J. Suhonen, O. Civitarese,Nucl. Phys. A 924 (2014)1

ββ ISM and IBM-2: J.Barea, J. Kotila, F.Iachello, Phys. Rev. C 87(2013) 014315

IBFFM-2: N. Yoshida, F.Iachello, Prog. Theor.Exp. Phys. 2013 (2013)043D01

Jouni Suhonen (JYFL, Finland) NDM2018 15 / 34

Forbidden β decays and the value of gA

Results from:

Quenching of gA

as derived fromβ decays

of forbiddenness F

Jouni Suhonen (JYFL, Finland) NDM2018 16 / 34

INCENTIVE: 0νββ decay through the higher angular-momentum states

11648Cd68

0+gs

1+gs 11649In67

0+gs11650Sn66

stable0νβ−β−

5+isom

4+2+

8−isom4+7−

6−4+5−

3+4−

2−7+

...

Jouni Suhonen (JYFL, Finland) NDM2018 17 / 34

Global study for the first-forbidden (F = 1) 2−

gs → 0+gs decays

H. Ejiri, N. Soukouti and J. S., Spin-dipole nuclear matrix elements for double beta decays and

astro-neutrinos, Phys. Lett. B 729 (2014) 27

kmNM

km

Km=kmNM

= 1

8436Kr48

0+gsstable

ML

2−gs 8437Rb47

0+gs8438Sr46

MR

M(SD2−) =√

MLMR

〈k〉 =⟨

Mexp(SD2−)

Mqp(SD2−)

≈ 0.18

〈kNM〉 =⟨

Mexp(SD2−)

MpnQRPA(SD2−)

≈ 0.45

⇒ geffA ≈ 0.57

Jouni Suhonen (JYFL, Finland) NDM2018 18 / 34

Extrapolation to β decays of higher forbiddenness (F ≥ 2)

Based on the global studies inH. Ejiri, J. S., J. Phys. G: Nucl. Part. Phys. 42 (2015) 055201

H. Ejiri, N. Soukouti, J. S., Phys. Lett. B 729 (2014) 27

J. Kostensalo, J.S., Phys. Rev. C 95 (2017) 014322 conclude that all unique-forbidden β transitions

roughly evenly quenched)Then: Low-energy quenching of gA derivable from the hatched regions of theGamow-Teller studies in the pnQRPA framework:

Mass range A = 76 − 82 A = 100 − 116 A = 122 − 136

geffA,0ν 0.5 − 1.0 0.4 − 0.7 0.5 − 0.8

Assumption: Also the forbidden non-unique virtual transitions behave like the

forbidden unique virtual transitions. BUT: How to study the forbiddennon-unique decays?Caveat: 0νββ decay is a high-momentum transfer process (q ∼ 100MeV) ⇒ less quenching (J. Menéndez, D. Gazit, A. Schwenk, PRL 107 (2011) 062501)

Jouni Suhonen (JYFL, Finland) NDM2018 19 / 34

Spectrum-shape method (SSM)

Results from:

Effective value of gA

as derived fromelectron spectra of

forbidden non-unique β decays

Jouni Suhonen (JYFL, Finland) NDM2018 20 / 34

Spectrum shape of higher-forbidden non-unique βdecays

Half-life:t1/2 = κ/C .

Dimensionless integrated shape function:

C =

∫ w0

1C(we)pwe(w0 − we)

2F0(Zf ,we)dwe .

Shape factor:

C(we) =∑

ke,kν ,K

λke

[

MK(ke, kν)2+ mK(ke, kν )

2−

2γke

keweMK(ke, kν )mK(ke, kν )

]

,

where

λke=

Fke−1(Z, we)

F0(Z, we); γke

=√

k2e − (αZf )

2 ,

Fk−1(Z, we) being the generalized Fermi function.

Decomposition of the shape factor:

C(we) = g2VCV(we) + gA

2CA(we) + gVgACVA(we).

Jouni Suhonen (JYFL, Finland) NDM2018 21 / 34

ISM-computed β spectra for different values of gA

Normalized

ISM-computed

electron spectra for

the 2nd-forbidden

nonunique β−

decays of 94Nb and98Tc (gV = 1.0).

Jouni Suhonen (JYFL, Finland) NDM2018 22 / 34

Example: ISM- and MQPM-computed electron spectra

Normalized ISM-

and

MQPM-computed

electron spectra for

the 2nd-forbidden

nonunique β− decay

of 99Tc (gV = 1.0)

using different

values of gA.

(ISM)

(MQPM)Jouni Suhonen (JYFL, Finland) NDM2018 23 / 34

Example: Decay of 113Cd – Comparison with data

Normalized electron spectrafor the 4th-forbiddennonunique β− decay

113Cd(1/2+) → 113In(9/2+)(gV = 1.0).

Experimental data from:

The COBRA collaboration,

L. Bodenstein-Dresler et

al., arXiv:1806.02254[nucl-ex] 6 Jun 2018

Jouni Suhonen (JYFL, Finland) NDM2018 24 / 34

Distribution of the best-match gA values from 44 detector units

gA(ISM) = 0.92 ± 0.02gA(MQPM) = 0.91 ± 0.01gA(IBFM-2) = 0.94 ± 0.09

Jouni Suhonen (JYFL, Finland) NDM2018 25 / 34

Example: Decay of 115In – Comparison with data

Normalized electron spectrafor the 4th-forbiddennonunique β− decay

115In(9/2+) → 115Sn(1/2+)(gV = 1.0).

Result from:

The MIT-CSNSM-Jyväskylä

collaboration, A. Leder et

al., to be submitted.gA(ISM) = 0.83 ± 0.03

gA(IBFM-2) = 0.88 ± 0.06gA(MQPM) = 0.94+0.03

−0.04

Jouni Suhonen (JYFL, Finland) NDM2018 26 / 34

Summary of the exploratory work on β spectra

Transition Jπii (gs) J

πf

f (nf ) Branching K Sensitivity Nucl. model

36Cl → 36Ar 2+ 0+ (gs) 98% 2 None ISM48Ca → 48Sc 0+ 4+ (2) ∼0% 4 None ISM48Ca → 48Sc 0+ 6+ (gs) ∼0% 6 None ISM50V → 50Cr 6+ 2+ (1) ∼0% 4 Weak ISM

60Fe → 60Co 0+ 2+ (1) 100% 2 None ISM85Br → 85Kr 3/2− 9/2+ (gs) ∼0% 3 Moderate MQPM87Rb → 87Sr 3/2− 9/2+ (gs) 100% 3 Moderate MQPM, ISM92Rb → 92Sr 0− 0+ (gs) 95% 1 Weak ISM93Zr → 93Nb 5/2+ 9/2+ (gs) 5 ≤% 2 Weak MQPM93Y → 93Zr 1/2− 1/2+ (1) 2% 1 Moderate ISM

94Nb → 94Mo 6+ 4+ (2) 100% 2 Strong NSM95Sr → 95Y 1/2+ 1/2− (gs) 56% 1 Weak ISM

96Zr → 96Nb 0+ 4+ (2) ∼0% 4 None ISM96Zr → 96Nb 0+ 6+ (gs) ∼0% 6 Strong ISM96Y → 96Zr 0− 0+ (gs) 96% 1 weak ISM

97Zr → 97Nb 1/2+ 9/2+ (gs) ∼0% 4 Strong MQPM97Y → 97Zr 1/2+ 1/2− (gs) 40% 1 Weak ISM

98Tc → 98Ru 6+ 4+ (3) 100% 2 Strong ISM99Tc → 99Ru 9/2+ 5/2+ (gs) 100% 2 Strong MQPM, ISM

Jouni Suhonen (JYFL, Finland) NDM2018 27 / 34

Summary on β spectra continues . . .

Transition Jπii (gs) J

πf

f (nf ) Branching K Sensitivity Nucl. model

101Mo → 101Tc 1/2+ 9/2+ (gs) ∼0% 4 Strong MQPM113Cd → 113In 1/2+ 9/2+ (gs) 100% 4 Strong MQPM, ISM, IBFM-2115Cd → 115In 1/2+ 9/2+ (gs) ∼0% 4 Strong MQPM115In → 115Sn 9/2+ 1/2+ (gs) 100% 4 Strong MQPM, ISM, IBFM-2117Cd → 117In 1/2+ 9/2+ (gs) ∼0% 4 Strong MQPM119In → 119Sn 9/2+ 1/2+ (gs) ∼0% 4 Strong MQPM123Sn → 123Sb 11/2− 1/2+ (4) ∼0% 5 Weak MQPM125Sb → 125Te 7/2+ 9/2− (3) 7.2% 1 None MQPM126Sn → 126Sb 0+ 2+ (5) 100% 2 None ISM133Sn → 133Sb 7/2− 7/2+ (gs) 85% 1 Weak ISM134Sb → 134Te 0− 0+ (gs) 98% 1 Weak ISM135Cs → 135Ba 7/2+ 3/2+ (gs) 100% 2 None MQPM

135Te → 135I 7/2− 7/2+ (gs) 62% 1 Weak ISM137Cs → 137Ba 7/2+ 3/2+ (gs) 5.4% 2 None MQPM, ISM137Xe → 137Cs 7/2− 7/2+ (gs) 67% 1 Weak ISM138Cs → 138Ba 3− 3+ (1) 44% 1 Strong ISM139Ba → 139La 7/2− 7/2+ (gs) 70% 1 Weak ISM139Cs → 139Ba 7/2+ 7/2− (gs) 85% 1 Weak ISM

Jouni Suhonen (JYFL, Finland) NDM2018 28 / 34

Summary on β spectra continues . . .

Transition Jπii (gs) J

πf

f (nf ) Branching K Sensitivity Nucl. model

141Ce → 141Pr 7/2− 5/2+ (gs) 31% 1 Weak MQPM142Pr → 142Nb 2− 2+ (1) 3.7% 1 Weak ISM143Pr → 143Nb 7/2+ 7/2− (gs) 100% 1 Weak ISM159Gd → 159Tb 3/2− 5/2+ (1) 26% 1 None MQPM161Tb → 161Dy 3/2+ 5/2− (1) ∼0% 1 None MQPM169Er → 169Tm 1/2− 3/2+ (1) 45% 1 None MQPM210Bi → 210Po 1− 0+ (gs) 100% 1 Strong ISM211Pb → 211Bi 9/2+ 9/2− (gs) 91% 1 Weak ISM213Bi → 213Po 9/2− 9/2+ (gs) 66% 1 Weak ISM

Jouni Suhonen (JYFL, Finland) NDM2018 29 / 34

Effects of quenched values of gA

Results from:

Effects of a quenched gA

on NMEs of 0νββ decays:

[

T(0ν)1/2

]−1= (gA,0ν)

4G(0ν)∣

∣M(0ν)∣

2(

〈mν〉me

)2

M(0ν) = M(0ν)GT −

(

gVgA,0ν

)2M

(0ν)F + M

(0ν)T

Jouni Suhonen (JYFL, Finland) NDM2018 30 / 34

Example: 0νββ NMEs of 76Ge, effect on the half-lifeJiao et al.: Phys.Rev. C 96 (2017)054310(GCM+ISM)

Menendez et al.:Nucl. Phys. A818 (2009) 139(ISM)

Senkov et al.:Phys. Rev. C 93(2016) 044334(ISM)

Barea et al.: Phys.Rev. C 91 (2015)034304 (IBM-2)

Suhonen: Phys.Rev. C 96 (2017)055501 (pnQRPA+ isospinrestoration + dataon 2νββ)

Menendez et al.

Barea et al.

Jiao et al. (triaxial)

Jiao et al. (axial)

Senkov et al.

Suhonen

〈mν〉 = 50meV

5× 1026

1× 1027

5× 1027

1× 1028

0.5 1.0

T(0ν)

1/2

gA

Jouni Suhonen (JYFL, Finland) NDM2018 31 / 34

Novel application of electron spectra of forbiddendecays

Try to investigate:

Reactor-ν anomaly

andthe spectral shoulder

See: L. Heyen, J. Kostensalo, N. Severijns, J.S., First forbiddentransitions in the reactor anomaly, arXiv:1805.12259 [nucl-th] 30 May2018

Jouni Suhonen (JYFL, Finland) NDM2018 32 / 34

Results from the analyses (see the parallel talk of JoelKostensalo on Tuesday evening!)

Taking into account the(first-forbidden)

decays of86Br(0+), 86Br(2+), 87Se, 88Rb,89Br(3/2+), 89Br(5/2+), 90Rb,91Kr(5/2−), 91Kr(3/2−), 92Rb,

92Y, 93Rb, 94Y(0+), 94Y(0+),95Rb(7/2+), 95Rb(3/2+), 95Sr,

96Y, 97Y, 98Y, 133Sn, 134mSb(6+),134mSb(6+?), 135Te, 136mI, 137I,

138I, 139Xe, 140Cs, 142Cs

decreases the ν flux by

5% !

2 3 4 5 6 7Prompt energy (MeV)

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Norm

alize

d di

ffere

nce

(%)

Double ChoozRENODaya Bay

Huber-Mueller uncertaintyForbidden correction

The spectral sholder appears due to forbidden

spectral corrections !Jouni Suhonen (JYFL, Finland) NDM2018 33 / 34

Conclusions and OutlookConclusions:

The long chain of ISM calculations and the recent pnQRPA and IBM-2 calculations ofGamow-Teller β decays and 2νββ decays are (surprisingly!) consistent with each otherand clearly point to a A-dependent quenched gA

Studies on GT 1+ and SD 2− β decays shed light on the suppression chain: quasiparticleNME → pnQRPA NME → experimental NME

Studies of high-forbidden unique β decays (F ≥ 2) → uniform quenching → speculationsabout modifications in the 0νββ-decay half-lives

The spectrum-shape method (SSM) for forbidden non-unique β decays is a robust tool

(largely independent of the nuclear model, the assumed Hamiltonian and mean field) to

seach for the effective value of gA and to try to solve other problems, like those related to

the reactor-ν spectra.

Outlook:Urge measurements of the β spectra for the interesting decays amenable to the SSM

The effective value of gA is involved in all weak processes, and thus has impact on studies

of rare β decays, neutrino physics and astrophysics

Jouni Suhonen (JYFL, Finland) NDM2018 34 / 34