Entrainment and Chaos in the Hodgkin-Huxley...

Post on 26-Apr-2020

2 views 0 download

transcript

Entrainment and Chaos in theHodgkin-Huxley Oscillator

Kevin K. Lin

http://www.cims.nyu.edu/∼klin

Courant Institute, New York University

Mostly Biomath - 2005.4.5 – p.1/42

Overview (1)

Goal: Show that the Hodgkin-Huxley neuron

model, driven by a periodic impulse train, can

exhibit entrainment, transient chaos, and fully

chaotic behavior.

Mostly Biomath - 2005.4.5 – p.2/42

Overview (2)

Why?

1. Suggested by general, rigorous

perturbation theory of kicked oscillators

(Qiudong Wang & Lai-Sang Young).

2. Hodgkin-Huxley is a paradigm for

excitable biological systems where

pulse-like inputs and outputs are natural.

Mostly Biomath - 2005.4.5 – p.3/42

Overview (3)

Results:

1. Entrainment and chaos are readily

observable in the pulse-driven

Hodgkin-Huxley system.

2. The pulse-driven Hodgkin-Huxley

system prefers entrainment.

3. Strong expansion is caused by

invariant structures.

Mostly Biomath - 2005.4.5 – p.4/42

Outline

Classical Hodgkin-Huxley neuron model

Kicked nonlinear oscillators &

Wang-Young theory

Pulse-driven Hodgkin-Huxley neuron

model

Mostly Biomath - 2005.4.5 – p.5/42

Squid giant axon

http://hermes.mbl.edu/publications/Loligo/squid

Mostly Biomath - 2005.4.5 – p.6/42

Schematic (rest state)

References:

Abbott and Dayan, Theoretical Neuroscience, MIT Press 2001

Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge

University Press 1987

Mostly Biomath - 2005.4.5 – p.7/42

Hodgkin-Huxley equations

v = C−1[

I − gKn4(v − vK) − gNam3h(v − vNa) − gleak(v − vleak)]

m = αm(v)(1− m)−βm(v)m

n = αn(v)(1− n)−βn(v)n

h = αh(v)(1− h)−βh(v)h

αm(v) = Ψ(

v+2510

)

, βm(v) = 4 exp (v/18) ,

αn(v) = 0.1Ψ(

v+1010

)

, βn(v) = 0.125 exp (v/80) ,

αh(v) = 0.07 exp (v/20) , βh(v) = 11+exp( v+30

10 ),

Ψ(v) = vexp(v)−1

.

Mostly Biomath - 2005.4.5 – p.8/42

Equivalent circuit

v = C−1[

I − gKn4(v − vK) − gNam3h(v − vNa) − gleak(v − vleak)]

http://www.syssim.ecs.soton.ac.uk/vhdl-ams/examples/hodhuxneu/hh2.htm

Mostly Biomath - 2005.4.5 – p.9/42

Parameters

In this study:

All parameters take on original squid

values except the injected current I

This guarantees stable oscillations

Mostly Biomath - 2005.4.5 – p.10/42

Parameters (cont’d)

vNa = −115 mV, gNa = 120 mΩ−1/cm2,

vK = +12 mV, gK = 36 mΩ−1/cm2,

vleak = −10.613 mV, gleak = 0.3 mΩ−1/cm2,

C = 1 µF/cm2, I = −14.2211827403

Mostly Biomath - 2005.4.5 – p.11/42

Parameters (cont’d)

-100

-80

-60

-40

-20

0

20

6 7 8 9 10 11 12 13 14-I

V

Unstable fixed pointStable fixed point

Limit cycle

Unstable cycle

Mostly Biomath - 2005.4.5 – p.12/42

Dynamicswithout kicks

40.030.020.010.00.0

t

0.0

-20.0

-40.0

-60.0

-80.0

v

0.0-20.0-40.0-60.0-80.0

v

0.7

0.65

0.6

0.55

0.5

0.45

n

Mostly Biomath - 2005.4.5 – p.13/42

Outline

Classical Hodgkin-Huxley neuron model

Kicked nonlinear oscillators &

Wang-Young theory

Pulse-driven Hodgkin-Huxley neuron

model

Mostly Biomath - 2005.4.5 – p.14/42

Kicked oscillators

A stable, nonlinear oscillator is a flow with

a limit cycle γ (period=Tγ) and basin of

attraction U.

A kick instantaneously changes the

system’s state:

Mostly Biomath - 2005.4.5 – p.15/42

Examples of kicked oscillators

Circadian rhythm, phase reset

experiments (Winfree).

Possible approach to disrupting

synchronous firing of neuron (Tass).

Mostly Biomath - 2005.4.5 – p.16/42

Simple Example

2.01.00.0-1.0

x

1.0

0.0

-1.0

y

r = (µ −αr2)r+1

2sin(3θ) · ∑

n∈Z

δ(t − nT)

θ = ω + βr2

Mostly Biomath - 2005.4.5 – p.17/42

Effect of Kick-and-Flow on Phase Space

1.00.80.60.40.20.0-0.2-0.4-0.6-0.8

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

-1.51.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

t = 0 t = 0 (after kick) t = 1

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

1.00.0-1.0

1.0

0.5

0.0

-0.5

-1.0

-1.5

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

t = 2 t = 2 (after kick) t = 4

Mostly Biomath - 2005.4.5 – p.18/42

Discrete time map

Define FT : R4 → R

4 by FT(x) = ΦT(K(x)), where

K(x) represents kicks

ΦT(x) = flow map

T = period of kicks.

Continuous time ⇔ Discrete time

Entrainment ⇔ FT has sinks

Chaos ⇔ FT chaotic

Mostly Biomath - 2005.4.5 – p.19/42

Reduction to 1-D

Wang and Young start with FT and

1. Reduces from the map FT on Rn to a circle

map fT:

limn→∞

FT+nTγ(x)

induces a map fT on γ ∼ S1. We refer to fT

as the singular limit or the phase resetting

curve.

2. Analyze fT and infer properties of FT.

Mostly Biomath - 2005.4.5 – p.20/42

Wang-Young Conditions

If

1. Kicks do not send limit cycle to “bad

places,” i.e. K(γ) does not go outside the

basin of γ

2. Kicks are in the “right” directions (e.g. not

along Wss(x)) to take advantage of shear

Mostly Biomath - 2005.4.5 – p.21/42

Wang-Young Consequences

Then for different kick amplitude A & kick

period T the discrete-time system FT can have

1. Rotation-like behavior (small A)

2. Sinks and sources (for all A large enough)

3. Transient chaos / “horseshoes” (for large

A & T)

4. Strange attractor & chaos (for large A &

T ≫ 1)

Mostly Biomath - 2005.4.5 – p.22/42

Wang-Young Theory (cont’d)

Notes:

1. The conditions are satisfied for the simple

example.

2. For Hodgkin-Huxley there is not too much

choice if we want to stay close to physical

interpretation of model.

Mostly Biomath - 2005.4.5 – p.23/42

Lyapunov exponents

The largest Lyapunov exponent λ of FT is

useful for distinguishing different scenarios

numerically:

Rotations ⇔ λ = 0

Sinks ⇔ λ < 0

Chaos ⇔ λ > 0

Mostly Biomath - 2005.4.5 – p.24/42

Outline

Classical Hodgkin-Huxley neuron model

Kicked nonlinear oscillators &

Wang-Young theory

Pulse-driven Hodgkin-Huxley neuron

model

Mostly Biomath - 2005.4.5 – p.25/42

Hodgkin-Huxley equations

v = C−1[

I − gKn4(v − vK) − gNam3h(v − vNa) − gleak(v − vleak)]

+A ∑n∈Z δ (t − nT)

m = αm(v)(1− m)−βm(v)m

n = αn(v)(1− n)−βn(v)n

h = αh(v)(1− h)−βh(v)h

Prior work: Winfree, Best on “null space” and

degree-change.

Mostly Biomath - 2005.4.5 – p.26/42

Entrainment

A = 10, T = 81.0

150.0100.050.00.0

t

0.0

-20.0

-40.0

-60.0

-80.0

v

1500.01000.0500.00.0

t

60.0

40.0

20.0

0.0

-20.0

-40.0

-60.0

v

Mostly Biomath - 2005.4.5 – p.27/42

Entrainment (cont’d)

A = 10, T = 81.0

150.0100.050.00.0

t

0.0

-20.0

-40.0

-60.0

-80.0

v

1500.01000.0500.00.0

t

100.0

50.0

0.0

-50.0

-100.0

v1(t)-v2(t)

Mostly Biomath - 2005.4.5 – p.28/42

Entrainment (cont’d)

Time-T map: FT = ΦT K

20.010.00.0

Multiple of T (n)

20.0

0.0

-20.0

-40.0

v1(n)-v2(n)

Mostly Biomath - 2005.4.5 – p.29/42

Chaos

A = 10, T = 80.8

6000.04000.02000.00.0

t

100.080.060.040.020.00.0

-20.0-40.0-60.0-80.0

v

6000.04000.02000.00.0

t

2.0

0.0

-2.0

-4.0

-6.0

Log10(dist)

Mostly Biomath - 2005.4.5 – p.30/42

λ (FT) versusT

8.07.06.05.04.03.02.0

T / T_gamma

0.0

-2.0

-4.0

-6.0

-8.0

Largest Lyapunov exponent of F_T

Mostly Biomath - 2005.4.5 – p.31/42

λ (FT) versusA

40.030.020.010.0

Drive amplitude

1.0

0.8

0.6

0.4

0.2

0.0

SINKS

CHAOS

ROTATIONS

UNKNOWN

Chaos: Prob(λ > 3ǫ) Sinks: Prob(λ < −3ǫ)

Rotations: Prob(∣

∣λ∣

∣ < ǫ/3) Unknown: everything else

Mostly Biomath - 2005.4.5 – p.32/42

Phase resetting curves (fT)

12.510.07.55.02.50.0

20.0

15.0

10.0

5.0

0.0

A=5, T=101.5

12.510.07.55.02.50.0

15.0

10.0

5.0

0.0

A=10, T=80.8

12.510.07.55.02.50.0

15.0

10.0

5.0

0.0

A=20, T=101.5

Mostly Biomath - 2005.4.5 – p.33/42

Plateau and fixed points

The first return map R fTto the interval [4, 10]

(enclosing the plateau), for A = 10 and

T = 17.6.

10.09.08.07.06.05.04.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

Mostly Biomath - 2005.4.5 – p.34/42

Plateau and fixed points

10.09.08.07.06.05.04.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

Drive amplitude A Probability of sink near plateau

5 41%

10 58%

20 68%

30 76%

Mostly Biomath - 2005.4.5 – p.35/42

Zooming into the kink

1.00.80.60.40.20.0

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

Mostly Biomath - 2005.4.5 – p.36/42

Why the kink?

-2.0-4.0-6.0-8.0-10.0-12.0-14.0

v

0.38

0.36

0.34

0.32

h

0.180.160.140.120.1

m

0.45

0.44

0.43

0.42

n

But Hodgkin-Huxley lives in R4...

Mostly Biomath - 2005.4.5 – p.37/42

Why the kink? (cont’d)

Approaching critical Acrit ≈ 13.5895...:

10.510.09.59.0

30.0

20.0

10.0

0.0

A=13.58

10.510.09.59.0

40.0

30.0

20.0

10.0

0.0

A=13.589

10.510.09.59.0

50.0

40.0

30.0

20.0

10.0

0.0

A=13.5895

10.510.09.59.0

40.0

30.0

20.0

10.0

0.0

A=13.5896

10.510.09.59.0

30.0

20.0

10.0

0.0

A=13.59

10.510.09.59.0

20.0

10.0

0.0

A=13.6

Mostly Biomath - 2005.4.5 – p.38/42

Why the plateau?

Graph of fT for A = 10, around plateau.

9.08.07.06.05.0

phase

9.0

8.0

7.0

6.0

5.0

f_T

9.08.07.06.05.0

phase

0.0

-1.0

-2.0

-3.0

-4.0

-5.0

Black: log10 | f ′ | Blue: log10 |∠(Ess(K(γ(θ)), γ(θ)))|

Mostly Biomath - 2005.4.5 – p.39/42

Finding horseshoes

Horseshoes can produce transient chaos:

A = 10, T = 81

0.70.60.50.40.3

12.0

10.0

8.0

6.0

4.0

2.0

Mostly Biomath - 2005.4.5 – p.40/42

Summary

Can observe entrainment and chaos in the

pulse-driven Hodgkin-Huxley neuron

model.

The pulse-driven Hodgkin-Huxley model

prefers entrainment. This can be

explained.

Complex phase response can arise from

kicks going near invariant structures.

Mostly Biomath - 2005.4.5 – p.41/42

References

1. Eric N. Best, “Null space in the Hodgkin-Huxley equations,” Biophys. J. 27

(1979)

2. Kevin K. Lin, “Entrainment and chaos in the Hodgkin-Huxley oscillator,” in

preparation

3. Qiudong Wang and Lai-Sang Young, “Strange attractors in

periodically-kicked limit cycles and Hopf bifurcations,” Comm. Math. Phys.

240 (2003)

4. Arthur Winfree, The Geometry of Biological Time, 2nd Edition,

Springer-Verlag (2000)

Acknowledgements I am grateful to Lai-Sang Young for her help

with this work, and to Eric Brown, Adi Rangan, Alex Barnett, and Toufic Suidan for

critical comments. Many thanks to Charlie Peskin for the invitation. This work is

supported by the National Science Foundation.

Mostly Biomath - 2005.4.5 – p.42/42