Exchange Bias from Double Multilayer Structures

Post on 14-Jan-2016

27 views 0 download

Tags:

description

Exchange Bias from Double Multilayer Structures. C. H. Marrows , P. Steadman, M. Ali, A. T. Hindmarch, and B. J. Hickey Department of Physics and Astronomy, University of Leeds, Leeds. LS2 9JT S. Langridge, R. Dalgliesh and S. Foster - PowerPoint PPT Presentation

transcript

Exchange Bias from Double Multilayer Structures

C. H. Marrows, P. Steadman, M. Ali, A. T. Hindmarch, and B. J. HickeyDepartment of Physics and Astronomy, University of Leeds, Leeds.

LS2 9JTS. Langridge, R. Dalgliesh and S. FosterISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxon. OX11 0QX

Introduction

• Exchange Bias – AF/F bilayer interaction.

• Double Multilayer Structures – model system for AF/F studies.

• Modelling – can predict magnetic structure.

• Neutron Reflectometry – depth sensitive vector magnetometry.

Exchange Bias

Problems with Meiklejohn-Bean:•Predicted exchange bias orders of magnitude too large.•Coercivity enhancement is not predicted.•Temperature dependence is not predicted.

Antiferromagnet

Ferromagnet

Two ModelsDomain Wall Formation inAntiferromagnet (Mauri) Interface Roughness

(Malozemoff)

D. Mauri, H. C. Siegmann, P.S. Bagus and E. Kay

J. Appl. Phys. 62, 3047 (1987)

A. P. MalozemoffPhys. Rev. B 35, 3697 (1987).

Ferromagnet

Antiferromagnet

Double Multilayer Structure

}}

Ferro

mag

netica

lly

Couple

d

Multila

yer

Antie

rrom

agn

etica

lly

Couple

d M

ultila

yer

Ta (75Å)

{Co (60Å)/Ru (10Å)}10

{Co (35Å)/Ru (15Å)}10

Ta (75Å)Si (001)

X-ray Reflectivity

dA

F

dF

2/dAF

2/dF

Magnetisation Data

}}Antiferromagnet

Ferromagnet

Double Multilayer

Modelling the spin structure.Energy per unit area = Zeeman + Anisotropy +

Coupling

N

i

N

iiiiiiiiiii JtKHtm

1

1

111,

20 )cos(coscos

•Layer index i

•Layer moment m

•Layer thickness t

•Applied field H

•Anisotropy constant K

•Interlayer Coupling Constant J

Minimise energy by varying moment orientations as field is swept – trace out hysteresis loop with full magnetic configuration known at each point.

Monte-Carlo Algorithm.

Neutron Reflectometry with Polarisation Analysis

Hµn Qkin

kou

t

Non-spin flip scatteringµn

M

Spin flip scatteringµn

Mµn

µn

n

Neutron Reflectometry

H=6kOe

Q(Å-1)

0.04 0.06 0.08 0.10 0.12 0.14

INTE

NSI

TY

10-6

10-5

10-4

10-3

10-2

Col 1 vs 54420.uu Col 4 vs 54420.dd Col 7 vs 54420.ud Col 10 vs 54420.du Col 10 vs uusim Col 10 vs ddsim Col 17 vs udsim Col 19 vs dusim

Saturation (6 kOe)Spin-flop phase (600 Oe)Exchange Spring (160 Oe)

µn

kin

kout

•No spin-flip scattering•No AF peak

•Spin-flip scattering•AF peak

•Decrease of spin-flip scattering•AF peak

2nd order

AF peak

2nd orderAF peak

Hysteresis CycleH=6kOe

Q(Å-1)

0.04 0.06 0.08 0.10 0.12 0.14

INTE

NSI

TY

10-6

10-5

10-4

10-3

10-2

Col 1 vs 54420.uu Col 4 vs 54420.dd Col 7 vs 54420.ud Col 10 vs 54420.du Col 10 vs uusim Col 10 vs ddsim Col 17 vs udsim Col 19 vs dusim

Saturation: 6 kOeSpin-flop Phase: 600 Oe

Exchange Spring: 160 Oe •Generate spin-structure from calculation.

•Pass to PNR simulation code (Polly).

•Fit PNR data using simulated annealing (changes <10°).

New Double Multilayer•Previous multilayers did not have exchange bias.•Introduce anisotropy into antiferromagnetic layer by adding Pt to magnetic layers.

{Co (56Å)/Ru (5Å)} 10

{CoPt (60Å)/Ru (10Å)} n

Si (001)

}}

MOKEn=5 n=10

-1000 -500 0 500 1000

-1.0

-0.5

0.0

0.5

1.0

H (Oe)

M/M

0

Hex=-46 Oe

Hex=-20 Oe

-1000 -500 0 500 1000

-1.0

-0.5

0.0

0.5

1.0

H (Oe)

M/M

0Antife

rrom

agnetica

lly

Couple

d M

ultila

yer

Ferro

mag

netica

lly

Couple

d

Multila

yer

dA

F

dF

Sensitive only to upper layers (~200Å)

Polarised Neutron Reflectometry

-2000 -1000 0 1000 2000

-0.185

-0.180

-0.175

-0.170

-0.165

H (Oe)

M/M

0

0.1

10-7

10-6

10-5

10-4

10-3

Inte

nsit

y (A

rb. U

nits

)

Q (A-1)

35 Oe

0.1

10-7

10-6

10-5

10-4

10-3

10-2

Inte

nsit

y (A

rb. U

nits

)Q (A

-1)

2.5 kOe

0.110

-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Inte

nsit

y (A

rb. U

nits

)

Q (A-1)

3.0 kOe

0.110

-7

10-6

10-5

10-4

10-3

Inte

nsit

y (A

rb. U

nits

)

Q (A-1)

950 Oe

Co (60Å)

{CoPt (60Å)/Ru (10Å)} 10

Hex=250 Oe

Summary• A large anisotropy in the

antiferromagnet is necessary for exchange bias.

• A Mauri type exchange spring exists in the exchanged biased multilayers – model system for perfect interface.

• Planar wall confined to AF layers.