Experimental and Theoretical status of neutrino-nucleus...

Post on 24-Sep-2020

0 views 0 download

transcript

Nu HoRIzons VII, 2018

Experimental and Theoretical status ofneutrino-nucleus cross section

Mohammad Sajjad Athar

1 / 34

Nu HoRIzons VII, 2018

Outline

1 Introduction

2 Quasielastic Scattering

3 Single Pion Production

4 Deep Inelastic Scattering

5 Quasielastic Hyperon Production

6 Conclusions

2 / 34

Nu HoRIzons VII, 2018

Introduction

Good understanding of neutrino interactions is important for:

neutrino detection, energy reconstruction, neutrino flux calibration

determination of backgrounds

reduction of systematic errors

needed in the quest for CP violation and mass hierarchy

Precision of 1-5% in cross sections is required

3 / 34

Nu HoRIzons VII, 2018

Introduction

Good understanding of neutrino interactions is important for:

neutrino detection, energy reconstruction, neutrino flux calibration

determination of backgrounds

reduction of systematic errors

needed in the quest for CP violation and mass hierarchy

Precision of 1-5% in cross sections is required

Near detectors help to reduce systematic errors, still there arelimitations:

3 / 34

Nu HoRIzons VII, 2018

Introduction

Good understanding of neutrino interactions is important for:

neutrino detection, energy reconstruction, neutrino flux calibration

determination of backgrounds

reduction of systematic errors

needed in the quest for CP violation and mass hierarchy

Precision of 1-5% in cross sections is required

Near detectors help to reduce systematic errors, still there arelimitations:

ND vs FD: These detectors are exposed to the

different fluxes with different flavor composition

different geometry, acceptance and targets

3 / 34

Nu HoRIzons VII, 2018

Introduction

Neutrino Antineutrino

4 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Theory of QE ν−Nucleus scattering

Inclusive CCQE Process

N

N ′

W+

νl

l−

X

A

5 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Theory of QE ν−Nucleus scattering

Inclusive CCQE Process

N

N ′

W+

νl

l−

X

A

Nuclear medium effects

Fermi motion & bindingenergy

Pauli blocking

Multinucleon effects

Final stateinteraction(FSI)effect

5 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Theory of QE ν−Nucleus scattering

Inclusive CCQE Process

N

N ′

W+

νl

l−

X

A

Nuclear medium effects

Fermi motion & bindingenergy

Pauli blocking

Multinucleon effects

Final stateinteraction(FSI)effect

1p-1h Excitation

W+(q)

W+(q)

n(p) p(p+ q)

5 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Theory of QE ν−Nucleus scattering

Inclusive CCQE Process

N

N ′

W+

νl

l−

X

A

Nuclear medium effects

Fermi motion & bindingenergy

Pauli blocking

Multinucleon effects

Final stateinteraction(FSI)effect

1p-1h Excitation

W+(q)

W+(q)

n(p) p(p+ q)

RPA

+ + +.............. +..............

W+

W+ W+

W+

W+

W+

W+

W+

W+

W+

V V

V

V

V

5 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Dytman et al., Nucl.Phys.Proc.Suppl. 229-232 (2012) 167-173

Cross Section

6 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Dytman et al., Nucl.Phys.Proc.Suppl. 229-232 (2012) 167-173

Cross Section

2p-2h Excitations

W+(q)

W+(q)

W+(q)

W+(q)

W+(q)

W+(q)

Marco MartiniJuan Nieves

6 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

GENIE 2.8.0

Rel. FGM (Smith & Moniz):MA = 1 GeV

Bodek-Richie model thatsimulates short range nucleon

correlations

2p-2h (Valencia)

GENIE 2.8.4

Rel. FGM (Smith & Moniz):MA = 1 GeV

RPA (Valencia)2p-2h (Valencia)

Tuned to inclusive MINERvA

CCQE data

NuWro

Local FGM+RPA+2p-2h: MA = 1.16 GeV

SF+2p-2h (MA = 1.2 GeV )

RFG+TEM (MA = 1.14 GeV )

NEUT

Local FGM+RPA+2p-2hSF+2p-2h with a raised value of

MA

Local FGM+RPA+2p-2h(Martini)

SuSA

NEUT 5.3.2

RFGM+RPA+2p-2h:MA = 1.15 GeV

2p-2h is normalised to 27%

7 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Wilkinson et al., Phys. Rev. D 93, 072010 (2016)

RFG (Smith & Moniz) + relativistic RPA + 2p2h (Valencia model)MA=1.01GeV

8 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Wilkinson et al., Phys. Rev. D 93, 072010 (2016)

RFG (Smith & Moniz) + relativistic RPA + 2p2h (Valencia model)MA=1.01GeV

9 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Wilkinson et al., Phys. Rev. D 93, 072010 (2016)

Simultaneously fitted MINERvA and MiniBooNE data

Fit type MA (GeV) 2p2h norm. (%)

RFG+rel.RPA+2p2h 1.15±0.03 27±12RFG+non-rel.RPA+2p2h 1.07±0.03 34±12

SF+2p2h 1.33±0.02 0 (at limit)

10 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Ankowski et al., Phys. Rev. D93, 113004 (2016)

1st approach: SF + MA=1.2 GeV (simulates 2p-2h reaction mechanism in aphenomenological manner).2nd approach: GENIE (SF + empirical procedure developed by Dytman et al.to take into account 2p2h) MA =1.03 GeV.

11 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

M. Betancourt et al., (MINERvA Collab); PRL 119, 082001 (2017)

GENIE: RFGM with MA= 1 GeV (No FSI) and with RPA and 2p2h (FSI) (Va-lencia model) contribution tuned to MINERvA inclusive scattering data.NuWro: A local Fermi gas model with MA= 1 GeV, (with 2p2h (No FSI) and withRPA and 2p2h (FSI) (Valencia model)).

12 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

M. Betancourt et al. (MINERvA Collab); PRL 119, 082001(2017)

13 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

d2σdcosθ dp

vs pµ

K. Abe et al.(T2K Collab) PRD 97, 012001 (2018)

Water target without pions in the final state

Comparison with NEUT and GENIE MC

In NEUT

RFGM+Rel RPA+2p2h

tuned to external MINERvA and MiniBooNE data

MA=1.15GeV, 2p2h norm=27%

GENIE 2.8.0 is used

14 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

d2σdcosθ dp

vs pµ

K. Abe et al.(T2K Collab) PRD 97, 012001 (2018)

Water target without pions in the final state

14 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Comparison with Martini Model and SuSA model

K. Abe et al.(T2K Collab), PRD 97, 012001 (2018)

15 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Patrick et al. (The MINERvA Collab), arXiv:1801.01197

MINERvA-tuned GENIE (includes RPA and MINERvA-tuned 2p2h), (red line)

GENIE without any modifications except the single non-resonant pion correction (blue line)

GENIE with the RPA weight but no 2p2h component (green line)

GENIE with MINERvA-tuned 2p2h but no RPA (violet line)

GENIE with RPA and untuned 2p2h (orange line)

16 / 34

Nu HoRIzons VII, 2018

Quasielastic Scattering

Charged Kaon Decay at Rest (KDAR) Experiment

MiniBooNE Collab arXiv:1801.03848 [hep-ex]

First Measurement of Monoenergetic νµ Charged Current Interactions

At Eνµ=236 MeV σCC = 0.27 ± 0.09 ± 0.08 × 10−38 cm2/neutron

Akbar et al. J. Phys. G 44 (2017) 125108

Nu HoRIzons VII, 2018

Quasielastic Scattering

Charged Kaon Decay at Rest (KDAR) Experiment

MiniBooNE Collab arXiv:1801.03848 [hep-ex]

First Measurement of Monoenergetic νµ Charged Current Interactions

At Eνµ=236 MeV σCC = 0.27 ± 0.09 ± 0.08 × 10−38 cm2/neutron

Akbar et al. J. Phys. G 44 (2017) 125108

17 / 34

Nu HoRIzons VII, 2018

Single Pion Production

ν/ν induced single pion production(SPP)

Charged current(CC)

νl p → l−

pπ+ νl n → l+

nπ−

νl n → l−

nπ+ νl p → l+

pπ−

νl n → l−

pπ0 νl p → l+

nπ0l = e,µ

Neutral current(NC)

νl p → νl nπ+ νl p → νl pπ0

νl p → νl pπ0 νl p → νl nπ+

νl n → νl nπ0 νl n → νl nπ0

νl n → νl pπ− νl n → νl pπ−

18 / 34

Nu HoRIzons VII, 2018

Single Pion Production

Higher Resonances

Resonances MR [GeV] Γtot0

πN branching

RIJ (GeV) ratio (%)

P33(1232) 1.232 0.117 100

P11(1440) 1.430 0.350 55 − 75

D13(1520) 1.515 0.115 55 − 65

S11(1535) 1.535 0.150 35 − 55

S31(1620) 1.630 0.140 20 − 30

S11(1650) 1.655 0.140 50 − 90

D15(1675) 1.675 0.150 35 − 45

F15(1680) 1.685 0.130 65 − 70

D33(1700) 1.700 0.150 12

P13(1720) 1.720 0.250 11

F35(1905) 1.880 0.330 9 − 15

P31(1910) 1.890 0.280 15 − 30

F37(1950) 1.930 0.285 35 − 45

19 / 34

Nu HoRIzons VII, 2018

Single Pion Production

20 / 34

Nu HoRIzons VII, 2018

Single Pion Production

cosθc

p

q

∆+

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2E

νµ(GeV)

0

0.5

1

1.5

2

σ(×

10

-39 c

m2)

Without Medium Effects(ME)With MEWith ME + π Abspn

No cut on W, MA

= 1.03 GeV

Eur. Phys. J. A 43, 209 (2010).

20 / 34

Nu HoRIzons VII, 2018

Single Pion Production

cosθc

p

q

∆+

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2E

νµ(GeV)

0

0.5

1

1.5

2

σ(×

10

-39 c

m2)

Without Medium Effects(ME)With MEWith ME + π Abspn

No cut on W, MA

= 1.03 GeV

Eur. Phys. J. A 43, 209 (2010).

Eνµ(GeV) σ with ME σ with ME

+ π absorption(% reduction) (% reduction)

0.8 42 14

1.0 36 15

1.4 31 14

1.8 28 15

20 / 34

Nu HoRIzons VII, 2018

Single Pion Production

21 / 34

Nu HoRIzons VII, 2018

Single Pion Production

Phys. Rev. D 94, 052005 (2016)

MINERvA Collaboration

22 / 34

Nu HoRIzons VII, 2018

Single Pion Production

ArgoNeuT

Deborah Harris NuInt 2017 Talk

23 / 34

Nu HoRIzons VII, 2018

Deep Inelastic Scattering

CC νl(νl)− N DIS

νl/νl(k) + N (p) → l−/l

+(k′) + X(p′)

νl/νll−/l+

W+/W−

NX

d2σνl (νl )

dx dy=

G2F MN Eν

π(1 + Q2/M2W

)2

(

[

y2

x +m2

l y

2Eν MN

]

F1N (x, Q2) + F2N (x, Q

2)

×

[

(1 −m2

l

4E2ν

) − (1 +MN x

2Eν

)y

]

±

[

xy(1 −y

2) −

m2l y

4Eν MN

]

F3N (x, Q2)

)

Fνp2

= 2x[d(x) + s(x) + u(x) + c(x)],

Fνp2

= 2x[u(x) + c(x) + d(x) + s(x)],

xFνp3

= 2x[d(x) + s(x) − u(x) − c(x)],

xFνp3

= 2x[u(x) + c(x) − d(x) − s(x)],

νl/νl(k) + N (p) → l−/l

+(k′) + X(p′)

νl/νll−/l+

W+/W−

NX

d2σνl (νl )

dx dy=

G2F MN Eν

π(1 + Q2/M2W

)2

(

[

y2

x +m2

l y

2Eν MN

]

F1N (x, Q2) + F2N (x, Q

2)

×

[

(1 −m2

l

4E2ν

) − (1 +MN x

2Eν

)y

]

±

[

xy(1 −y

2) −

m2l y

4Eν MN

]

F3N (x, Q2)

)

Fνp2

= 2x[d(x) + s(x) + u(x) + c(x)],

Fνp2

= 2x[u(x) + c(x) + d(x) + s(x)],

xFνp3

= 2x[d(x) + s(x) − u(x) − c(x)],

xFνp3

= 2x[u(x) + c(x) − d(x) − s(x)],

For a nuclear target

d2σνl (νl )

dx dy=

G2F MN Eν

π(1 + Q2/M2W

)2

(

[

y2

x +m2

l y

2Eν MN

]

F1A(x, Q2)

+

[

(1 −m2

l

4E2ν

) − (1 +MN x

2Eν

)y

]

F2A(x, Q2)

±

[

xy(1 −y

2) −

m2l y

4EνMN

]

F3A(x, Q2)

)

24 / 34

Nu HoRIzons VII, 2018

Deep Inelastic Scattering

CC νl(νl)− N DIS

νl/νl(k) + N (p) → l−/l

+(k′) + X(p′)

νl/νll−/l+

W+/W−

NX

d2σνl (νl )

dx dy=

G2F MN Eν

π(1 + Q2/M2W

)2

(

[

y2

x +m2

l y

2Eν MN

]

F1N (x, Q2) + F2N (x, Q

2)

×

[

(1 −m2

l

4E2ν

) − (1 +MN x

2Eν

)y

]

±

[

xy(1 −y

2) −

m2l y

4Eν MN

]

F3N (x, Q2)

)

Fνp2

= 2x[d(x) + s(x) + u(x) + c(x)],

Fνp2

= 2x[u(x) + c(x) + d(x) + s(x)],

xFνp3

= 2x[d(x) + s(x) − u(x) − c(x)],

xFνp3

= 2x[u(x) + c(x) − d(x) − s(x)],

νl/νl(k) + N (p) → l−/l

+(k′) + X(p′)

νl/νll−/l+

W+/W−

NX

d2σνl (νl )

dx dy=

G2F MN Eν

π(1 + Q2/M2W

)2

(

[

y2

x +m2

l y

2Eν MN

]

F1N (x, Q2) + F2N (x, Q

2)

×

[

(1 −m2

l

4E2ν

) − (1 +MN x

2Eν

)y

]

±

[

xy(1 −y

2) −

m2l y

4Eν MN

]

F3N (x, Q2)

)

Fνp2

= 2x[d(x) + s(x) + u(x) + c(x)],

Fνp2

= 2x[u(x) + c(x) + d(x) + s(x)],

xFνp3

= 2x[d(x) + s(x) − u(x) − c(x)],

xFνp3

= 2x[u(x) + c(x) − d(x) − s(x)],

For a nuclear target

d2σνl (νl )

dx dy=

G2F MN Eν

π(1 + Q2/M2W

)2

(

[

y2

x +m2

l y

2Eν MN

]

F1A(x, Q2)

+

[

(1 −m2

l

4E2ν

) − (1 +MN x

2Eν

)y

]

F2A(x, Q2)

±

[

xy(1 −y

2) −

m2l y

4EνMN

]

F3A(x, Q2)

)

24 / 34

Nu HoRIzons VII, 2018

Deep Inelastic Scattering

Only two theoretical groups have studied Nuclear MediumEffects

Kulagin & Petti Aligarh Group

Phenomenological Efforts

Phenomenological group data types used

EKS98 l+A DIS, p+A DYHKM l+A DISHKN04 l+A DIS, p+A DYnDS l+A DIS, p+A DYEKPS l+A DIS, p+A DYHKN07 l+A DIS, p+A DY

EPS08 l+A DIS, p+A DY, h±, π

0, π

± in d+Au

EPS09 l+A DIS, p+A DY, π0 in d+Au

nCTEQ l+A DIS, p+A DYnCTEQ l+A and ν+A DIS, p+A DYDSSZ l+A and ν+A DIS, p+A DY,

π0

, π± in d+Au

Paukkunen and Salgado:JHEP2010: “find no apparent disagreement with the nu-clear effects in neutrino DIS and those in charged lepton DIS.”

CTEQ-Grenoble-Karlsruhe collaboration “observed that the nuclear corrections inν-A DIS are indeed incompatible with the predictions derived from l±-A DIS andDY data”

25 / 34

Nu HoRIzons VII, 2018

Deep Inelastic Scattering

Only two theoretical groups have studied Nuclear MediumEffects

Kulagin & Petti Aligarh Group

Phenomenological Efforts

Phenomenological group data types used

EKS98 l+A DIS, p+A DYHKM l+A DISHKN04 l+A DIS, p+A DYnDS l+A DIS, p+A DYEKPS l+A DIS, p+A DYHKN07 l+A DIS, p+A DY

EPS08 l+A DIS, p+A DY, h±, π

0, π

± in d+Au

EPS09 l+A DIS, p+A DY, π0 in d+Au

nCTEQ l+A DIS, p+A DYnCTEQ l+A and ν+A DIS, p+A DYDSSZ l+A and ν+A DIS, p+A DY,

π0

, π± in d+Au

Paukkunen and Salgado:JHEP2010: “find no apparent disagreement with the nu-clear effects in neutrino DIS and those in charged lepton DIS.”

CTEQ-Grenoble-Karlsruhe collaboration “observed that the nuclear corrections inν-A DIS are indeed incompatible with the predictions derived from l±-A DIS andDY data”

25 / 34

Nu HoRIzons VII, 2018

Deep Inelastic Scattering

MINERvA at Fermilab: Phys.Rev. D93 (2016) 071101

Deep Inelastic Scattering

26 / 34

Nu HoRIzons VII, 2018

Deep Inelastic Scattering

MINERvA at Fermilab: Phys.Rev. D93 (2016) 071101

27 / 34

Nu HoRIzons VII, 2018

Quasielastic Hyperon Production

νl(k) + p(p) → l+(k′) + Λ(p′)

νl(k) + p(p) → l+(k′) + Σ0(p′)

νl(k) + n(p) → l+(k′) + Σ−(p′)

νl

l+

W−

N

Y

N

π

W−

N

Y

sinθc

|∆S | = 1 processes are Cabibbo suppressed as compared to |∆S | = 0 processes by

a factor of tan2θc = 0.054.

28 / 34

Nu HoRIzons VII, 2018

Quasielastic Hyperon Production

Hyperon giving rise to pions

As the decay modes of hyperonsto pions are highly suppressed inthe nuclear medium, making themlive long enough to pass throughthe nucleus and decay outside thenuclear medium.

Therefore, the produced pions areless affected by the strong interac-tion of nuclear field, and their FSIhave not been taken into account.

Phys. Rev. D 88, 077301 (2013)

29 / 34

Nu HoRIzons VII, 2018

Quasielastic Hyperon Production

scaled by a factor of 2.5 i.e ∼ 40% Phys. Rev. D 88, 077301 (2013)

30 / 34

Nu HoRIzons VII, 2018

Quasielastic Hyperon Production

scaled by a factor of 1.3 i.e ∼ 30% Phys. Rev. D 88, 077301 (2013)

31 / 34

Nu HoRIzons VII, 2018

Quasielastic Hyperon Production

32 / 34

Nu HoRIzons VII, 2018

Quasielastic Hyperon Production

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Eνµ (GeV)

0

5

10

15

20

σ (

10

-40 c

m2)

Andrepoulos

Present results

Our results are are multiplied bya factor of 7

Result from Andrepoulos talk

J. Phys. G 42 (2015) 055107Phys. Rev. D 94 (2016) 114031

32 / 34

Nu HoRIzons VII, 2018

Conclusions

Conclusions

We have moved closer in the last one decade but still there aremany more unanswered questions than the solutions we havecome up with.

33 / 34

Nu HoRIzons VII, 2018

34 / 34