Experimental,Measurements,and ...

Post on 31-Oct-2021

3 views 0 download

transcript

Experimental  Measurements  and  Numerical  Simula4ons  in  a  3-­‐Turbine  Array  of  45:1  Scale  DOE  RM1  Turbines  

Alberto Aliseda!Danny Sale!

Teymour Javaherchi!Nick Stelzenmuller!

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

LABORATORY-SCALE ROTOR GEOMETRY

I Maximize chord-based Reynoldsnumber

I Choose foil to minimize Reynoldsnumber effects

I Match performance and optimum tipspeed ratio with blade-elementmomentum design code

I Attempt to match power extractionand wake characteristics at scale, notgeometry

0.2 0.4 0.6 0.8 10.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

5

r/R Normalized spanwise coordinate

Chord

−bas

ed R

eynold

s num

ber

U=0.5 m/s

U=0.7 m/s

U=0.9 m/s

U=1.1 m/s

Transition?

Solid lines represent DOE RM 1Dotted lines represent lab−scale rotor

DOE RM 1 Turbine Scaling down process!

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

LABORATORY-SCALE ROTOR GEOMETRY

I Maximize chord-based Reynoldsnumber

I Choose foil to minimize Reynoldsnumber effects

I Match performance and optimum tipspeed ratio with blade-elementmomentum design code

I Attempt to match power extractionand wake characteristics at scale, notgeometry

6 7 8 9 10 110

0.1

0.2

0.3

0.4

0.5

TSR

Eff

icie

ncy

Full−scale DOE RM 1 efficiency(predicted from BEMT)

Lab−scale DOE RM 1 experimental efficiency

Geometrically-scaled DOE RM 1 Turbine Performance!

6 7 8 9 10 110

0.1

0.2

0.3

0.4

0.5

TSR

Eff

icie

ncy

Full−scale DOE RM 1 efficiency(predicted from BEMT)

Lab−scale DOE RM 1 experimental efficiency

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

LABORATORY-SCALE ROTOR GEOMETRY

I Maximize chord-based Reynoldsnumber

I Choose foil to minimize Reynoldsnumber effects

I Match performance and optimum tipspeed ratio with blade-elementmomentum design code

I Attempt to match power extractionand wake characteristics at scale, notgeometry

Performance-scaled !DOE RM 1 Turbine!

DOE  RM1  @  45:1  scale  Similarity  based  on  performance  curves  

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

LABORATORY-SCALE TURBINE45 cm diameter rotor

Experimental  CondiAons  Rechord  ~  105              Tip  Speed  Ra4o  (TSR)  =  4.5-­‐8  

Blockage  Ra4o  =  20%  

30

Figure 4.1: Photograph of the Bamfield Marine Science Centre flume

4.1.1 Flume dimensions and specifications

The BMSC flume has a width of 2 m, a depth of up to 1 m, and 12.3 m test section

length with full optical access. The pumps that drive the flow are capable of a

volumetric flow rate of approximately 1 m3/s, which results in a freestream flow speed

of 0.5 m/s. This flow speed was judged to be too slow to produce adequate Reynolds

numbers, which are shown to be Re ⇠ 60, 000 at this flow speed in Figure 3.3. To

increase the flow speed, and thus the Reynolds number, a partition was constructed

in the flume, which can be seen in Figure 4.1. This partition halved the flume width

from 2 m to 1 m, doubled the maximum flow speed, and doubled the blockage ratio.

Three  Different  Array  ConfiguraAons  1.  Array  of  two  coaxial  turbines.    

2.  Array  of  three  coaxial  turbines.  

3.  Array  of  three  turbines  with  lateral  offset.  

Measurement  LocaAons:    Two  Turbines  Coaxially  Mounted  

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

TWO CO-AXIAL TURBINES AT VARIOUS SPACINGS

Performance  for  Two  Coaxial  Turbines:  Experimental  Measurements    

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

TWO CO-AXIAL TURBINES PERFORMANCE

5.5 6 6.5 7 7.5 8 8.5 90

0.1

0.2

0.3

0.4

0.5

TSR

Eff

icie

ncy

Performance curves for two co−axially arranged turbinesat various separation distances

Upstream turbine

5D downstream turbine

8D downstream turbine

11D downstream turbine

14D downstream turbine

Performance  of  Two  Coaxial  Turbines:  Comparison  of  Experiments  and  SimulaAons  

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

TURBINE ARRAYS: THREE CO-AXIAL TURBINES

Measurement  LocaAons:    Three  Turbines  Mounted    Coaxially    

3-­‐Turbine  Coaxial  Array  Performance  Comparison  of  Experiments  and  SimulaAons  

Downstream  separaAon  5D  

EvoluAon  of  the  available  KineAc  Energy  Flux  a  3-­‐Turbine  Coaxial  Array  

Downstream  separaAon  5D  

Evolution of TKE contours in a 3-Turbine Coaxial Array!

Downstream  separaAon  5D  

3-­‐Turbine  Offset  Array  Performance  Comparison  of  Experiments  and  SimulaAons  

3-­‐Turbine  Offset  Array  Performance  LES  SimulaAons  

InvesAgaAon  of  the  Flume  Blockage  Effect    

ε  =  20  %  ε  =  10  %  ε  =    5    %   *  

•  Increase  in  blockage  leads  into  increase  in  efficiency  (verAcal  shi[  of  Cp  curve).  

•  Increase  in  blockage  shi[s  the  peak  of  efficiency  toward  higher  TSR  values    

         (horizontal  shi[  of  Cp  curve).  

Summary and Conclusions!

•  Three Turbines Array present non-monotonic performance: third turbine has higher efficiency than middle turbine!

•  Confinement plays a increasingly important role for higher number of turbines and lateral offset in the Array.!

•  Agreement between experimental and numerical results is best for single turbine and optimum TSR. !

•  Angular velocity fluctuations in the experiments, and enhanced wake recovery, not captured by simulations, leads to numerical/experimental divergence with lower TSRs, larger arrays and higher confinement.!

RMS  of  Normalized  Rota4onal  Velocity  Temporal  Evolu4on  (TSR  =  6.15,  7.16)  

   Array  of  Three  Turbines  with  Lateral  Offset  

•  ObservaAon  of  similar  physics  compared  to  results  from  array  of  two  &  three  coaxial  turbines.  

•  Downstream  turbines’  efficiency  increase  monotonically  with  the  TSR  value.  

3-­‐Turbine  1/4D  Lateral  Offset    Array  Performance  

Reynolds-­‐number  Dependent  Performance  

5 6 7 8 9 10 11 120.25

0.3

0.35

0.4

0.45

0.5

TSR

Eff

icie

ncy

Single turbine efficiency at various flow speeds, averaged over one minute

0.52 m/s flowspeed0.61 m/s flowspeed0.65 m/s flowspeed0.71 m/s flowspeed0.75 m/s flowspeed0.90 m/s flowspeed

Turbine  Comparison  for  Performance  

5 6 7 8 9 10 11 12 130

0.1

0.2

0.3

0.4

0.5

TSR

Eff

icie

ncy

Turbine 1Turbine 2Turbine 3

PIV  Velocity  Profiles  in  the  Wake  turbine  

0.4 0.5 0.6 0.7 0.8 0.9 1 1.10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Norm

aliz

ed v

erti

cal

dis

tance

fro

m c

ente

rlin

e

Normalized streamwise velocity

Rotor tip

Free surface

Streamwise velocity profiles for TSR 7

2D up

2D down

3D down

5D down

7D down

Results  of  BEM  study  (3/3)  Effect  of  blockage  on  efficiency  

 

•   Blockage  increases  the  efficiency.  •   Blockage  shi[s  the  peak  of  efficiency  to  the  right.  •   Blockage  delays  the  peak  of  efficiency  of  the  two  downstream  turbines.  

  Source  :  S.  J.  Miley’s  catalog  of  airfoils  

α(r)= arctanVinc(r )rω

+ β(r)

Angle  of  adack  :  

3-­‐Turbine  1/4D  Lateral  Offset    Array  Performance  

Downstream  separaAon  5D