Feedback Bhat

Post on 12-Apr-2016

14 views 1 download

description

feedback systems in digital control iust

transcript

Feedback LinearizationPresented by : Shubham Bhat

(ECES-817)

Feedback Linearization- Single Input case

3...)(2...)()(

.0)0(

,0)()(,

.0)0(,0

1...)()("

xTzuxsxqv

defineWeTwithRonT

hismdiffeomorplocalaandorigintheofodneighborhosomeinxallforxswithXSsqfunctionssmoothexistsThere

fandcontainingRXsetopensomeonfieldsvectorsmootharegandfwhere

xugxfxbydescribedsystemaConsider

n

Feedback Linearization- Single Input case

.,,5

,

.)(

1)()(

5...,)(

1)()(

.,..),(

4...

var

systemthetoappliedfilterpredepenedentstatenonlinearaandfeedbacknonlineartherepresentsthen

systemthetoappliedinputexternaltheasvofthinkweifHence

functionssmoothalsoarexs

andxsxqwhere

vxsxs

xqu

lelinearizabfeedbackcalledissystemthecasethisInlecontrollabisbApairthewhere

bvAzzformtheof

equationaldifferentilinearasatisfyvandziablesresultingThe

1

0

1

1210

1

11

1

||

'

,

1:00

,

........0.1000010

,

n

ijj

n

i

n

sasAsI

polynomialsticcharacteritheoftscoefficienthearesatheand

bM

aaaa

AMM

wherebvMzAMMz

formcanonicallecontrollabinissystemresultingthethatsuchzMz

tiontransformastateaapplyingBy

Feedback Linearization- Contd.

]....[

)()()(),(

1:00

,

0000.......0..1000010

,

]...[

110'

1'1

110

n

n

aaaa

whereuxsxTMaxqzavvxTMz

bA

wherevbzAz

systemloopclosedtheinresultszaaavv

formfeedbackstatefurtherA

Feedback Linearization- Contd.

Problem Statement

vzzzzzzzthendefinedarezandviablesnewif

conditionsfollowingthesatisfyingTthatsuchRRThismdiffeomorplocalaiii

ofodneighborhotheinxallforxsthatsuchXSsfunctionsmoothaii

XSqfunctionsmoothai

existstheredoesinassystemtheGiven

nnn

nn

,,....,,var

:,0)0(:)(

.00)()()(

)()(

??,1

13221

Example- Controlling a fluid level in a tank

.,

.sectansec)(

2)(])([

tanmod.

,tanint.tan

0

0

0

problemregulationnonlinearainvolveshofcontrolthehleveldesiredthefromdifferentquiteishlevelinitialtheIf

pipeoutlettheoftioncrosstheisaandktheoftioncrosstheishAwhere

ghatudhhAdtd

isktheofeldynamicThehislevel

initialtheandktheouflowtheisinputcontrolThehlevelspecifiedatokainfluidofhleveltheofcontroltheConsider

d

h

d

.0)(~

0~

,tan,)(~

~sin

,""

)(2)(

)(

2)(

tasththatimpliesThis

hh

isdynamicsloopclosedresultingthetconspositiveabeinganderrorlevelthebeinghthhwith

hvasvgChoo

vh

linearisdynamicsresultingthespecifiedbetoinputequivalentanbeingvwith

vhAghatu

aschosenistuIf

ghauhhA

aswrittenbecandynamicsThe

d

Example – Contd.

.0)(~

~)(

),(var.sec

2

~)(2)(

mindet

tasthyieldstilltoasso

hthv

aschosenbecanvinputequivalentthethfunctionyingtimeknownaisleveldesiredtheIf

levelfluidtheraisetousedispartondthewhile

ghaflowoutputtheprovidetousedisRHStheonpartfirstThe

hhAghatu

lawcontrolnonlinearthebyederisflowinputactualThe

d

d

Example – Contd.

.formcompanionlecontrollabthebydescribedsystemsnonlinearof

classsatoappliedbecanionlinearizatfeedbackofideaThe

.)()(,

)()()(

statestheoffunctionnonlineararexbandxfandoutputscalartheisxinputcontrolscalartheisuwhere

uxbxfx

aredynamicsitsifformcompanioninbetosaidissystemAn

vx

formegratormultiple

fvb

u

nonzerobetobgassuinputcontrolthegU

uxbxfx

x

xx

x

dtd

n

n

n

n

int

][1)min(sin

)()(

......2

1

1

Example – Contd.

0)(0...

,....

)1(....,

0)1(

1)(

01

1

11

txthatimplieswhichxkxkx

toleadingplanecomplexhalflefttheinstrictlyrootsitsallhaskpkppolynomialthethatsochosenkthewith

nxkxkxkvlawcontroltheThus

nn

n

nn

ni

no

Example – Contd.

)2cos(sincoscos22

,sin

var,)2cos(cos

sin2

111112

211

122

11

1122

1211

zauzzzzzzzz

areequationsstatenewthethenxaxz

xziablesofsetnewtheconsiderweifHowever

xuxxxxaxxx

Input State Linearization

.sinint

sin,,

2

,

)cos2sincos()2cos(

1:

2

211

11111

vinputnewthegudynamicsnewthegstabilizinofproblemtheodtransformebeenhasuinputcontrol

originalthegudynamicsoriginalthegstabilizinofproblemthetiontransformainputandtiontransformastatethethroughThus

vzzzz

relationstateinputlinearatoleadingdesignedbetoinputequivalentanisvwhere

zzzzvza

u

lawcontrolthebycanceledbecantiesnonlineariThe

Input State Linearization-Contd.

1111121

21

22

211

2

2211

cos2sincossin22()2cos(

1,

.222

2,.

xxxxxaxx

u

xandxstateoriginaltheoftermsInatplacedarepoleswhose

zzzzz

dynamicsloopclosedstabletheinresultingzvchoosemayweexampleFor

gainsfeedbackofchoicesproperwithanywherepolestheplacecan

zkzkvlawcontrolfeedbackstatelinearThe

Input State Linearization-Contd.

azzx

zxbyzfromgivenisxstateoriginalThe

)sin( 122

11

pole-placement loop

zKv T ),( vxuu ),( uxfx

)(xzz z

Linearization Loop

-

x0

Input State Linearization-Contd.

)(),(

xhyuxfx

systemtheConsider

Our objective is to make the output y(t) track a desired trajectory yd(t) while keeping the whole state bounded, where yd(t) and its time derivatives up to a sufficiently high order are assumed to be known and bounded.

1

213

35

12

3221 )1(sin.

xyuxx

xxx

xxxxsystemorderthirdtheConsiderge

Input Output Linearization

To generate a direct relationship between the output y and the input u,differentiate the output y

.mindet

)(1

1

.exp)1()cos)(()(

)()()1(

.,)1(sin

12

212233

511

1

12

3221

ederbetoinputnewaisvwhere

fvx

u

formtheininputcontrolachooseweIfandybetweeniprelationshlicitanrepresentsThis

xxxxxxxf

bydefinedstatetheoffunctionaisxfwherexfuxy

againatedifferentiweuinputthetorelateddirectlynotisySincexxxxy

Input Output Linearization-Contd.

.exp0

.tan)()(

.int

,int

12

21

21

dynamicserrorstableonentiallyanrepresentswhichekeke

bygivenissystemloopclosedtheoferrortrackingThetsconspositivebeingkandkwhere

tytyewhereekekyvsimpleis

egratordoublethisforcontrollertrackingaofdesignThevy

vinputnewtheandoutputthebetweeniprelationshegratordoublelinearsimpleaobtainWe

dd

Note : The control law is defined everywhere, except at the singularity points such that x2= -1.

Input Output Linearization-Contd.

Internal Dynamics

•If we need to differentiate the output r times to generate an explicit relationship between output y and input u, the system is said to have a relative degree r.

•The system order is n. If r<= n, there is an part of the system dynamics which has been rendered “unobservable”. This part is called the internal dynamics, because it cannot be seen from the external input-output relationship.

•If the internal dynamics is stable, our tracking control design has been solved. Otherwise the tracking controller is meaningless.

•Therefore, the effectiveness of this control design, based on reduced-order model, hinges upon the stability of the internal dynamics.

1

32

2

1

xy

uux

xx

systemnonlineartheConsider

Assume that the control objective is to make y track yd(t).Differentiating y leads to the first state equation.Choosing control law

dynamicsernalthetoleadingequationdynamicondthetoappliedalsoisinputcontrolsameThe

eezerotoeofeconvergenconentialyieldswhich

tytexu d

int,sec

0exp

)()(32

Internal Dynamics

Internal Dynamics- Contd

.)()(

.0

,0sin

,.tan

)(

,

3/122

3/122

3/12

boundedistyderivativewhosetytrajectoryanygivencontrolrysatisfactoprovidedoescontrollerabovetheTherefore

Dxwhenxand

Dxwhenxce

Dx

thatconcludeweThustconspositiveaisDwhere

Dety

getweboundedbetoassumedisyandboundediseIf

dd

d

d

.,

322

nonlinearandautonomousnonticallycharactersiswhicheyxx d

.,),()(()()(

)(int)(0

,.exp

,).()(

2

22

2

2

1

2

2

1

udoessoboundedremainsxtytotendstytytotendstywhilethatseeWe

teyxxdynamicsernaltheandyyewhereeeequationtrackingtheyieldseyxu

lawcontroltheThusucontainslicitlywhichuxy

getweoutputtheofationdifferentioneWithtyoutputdesiredatracktorequiredistywhere

xy

uux

xx

systemlinearobservableandlecontrollabsimpletheConsider

dd

dd

d

d

Internal Dynamics in Linear Systems

..inf

,,)(

int,

:

2

22

1

2

2

1

systemtheforcontrollersuitableanotisthisThereforetasinity

togobothuyaccordinglandxthatimpliesThisytexx

isdynamicsernalthebutdynamicserrortrackingsametheyieldsaboveaslawcontrolsameThe

xy

uux

xx

systemdifferentslightlyaConsider

d

Internal Dynamics in Linear Systems

.inf,min

.minint,

.1,sec.1,,

.

1)(

1)(

,tan

22

21

effortiniterequirestrackingperfectsystemsphaseimumnonFor

systemphaseimumaisitbecausestableissystemfirstofdynamicsernalThus

atzeroplanehalfrightaistherecaseondtheforwhileatzeroplanehalfleftaistherecasefirsttheforySpecficall

zerosdifferentbutpolessamethehavesystemstheBothp

ppW

pppW

functionstransfertheconsiderwesystemstwothebetweendifferencelfundamentathisdundersTo

Internal Dynamics in Linear Systems

•Extending the notion of zeros to nonlinear systems is not a trivial proposition.

•For nonlinear systems, the stability of the internal dynamicsmay depend on the specific control input.

•The zero-dynamics is defined to be the internal dynamicsof the system when the system output is kept at zero by the input.

•A nonlinear system whose zero dynamics is asymptotically stable is an asymptotically minimum phase system.

•Zero-Dynamics is an intrinsic feature of a nonlinear system, which does not depend on the choice of control law or the desired trajectories.

Extension of Internal Dynamics to Zero Dynamics

•Lie derivative and Lie bracket

•Diffeomorphism

•Frobenius Theorem

•Input-State Linearization

•Examples

•The zero dynamics with examples

•Input-Output Linearization with examples

•Opto-Mechanical System Example

Mathematical Tools

Lie Derivatives

.

,,)(

ftorespectwithhofderivativeLiethecalled

hLfieldvectoraandxhfunctionscalaraGiven f

fhhLbydefinedfunctionscalaraisftorespectwithhofderivativeLiethethenRonfieldvectorsmoothabeRRf

andfunctionscalarsmoothabeRRhLetDefinition

f

nn

n

,:

,::

hLxx

hLyhLx

xhy

areoutputtheofsderivativeThexhyxfx

Example

ff

f2][

;

)()(:

Lie Brackets

,....2,1],[

Reint)tan

(],[

,

.

1

iforgadfgad

ggad

byyrecursiveldefinedbecanBracketsLiepeatedadjofordss

adwheregadaswrittencommonlyisgfBracketLieThe

gffggfbydefinedvectorthirdaisgandf

ofBracketLieTheRonfieldsvectortwobegandfLet

if

if

of

f

n

)sin2)(2sin(2)2cos(cos)2cos(

)2cos(0

cossincos2

cos)sin(2

0)sin(200

],[

)2cos(0

)(cos

sin2

)()(

121111

1

1112

1

12

121

1

112

121

xaxxxxxxa

xxxxax

xxxaxx

xgf

ascomputedbecanbracketLieThe

xxg

xxxaxx

f

bydefinedgandffieldsvectortwothewithuxgxfxLet

Example

Example - Lie Brackets

Properties of Lie Brackets

.)(

:)(

],[],[:)(

.tan,,,,,,

],[],[],[],[],[],[

:)(

21

2121

22112211

22112211

xoffunctionsmoothaisxhwhere

hLLhLLhLidentityJacobiiii

fggfitycommutativskewii

scalarstconsareandandfieldsvectorsmootharegggfffwhere

gfgfggfgfgfgff

ybilinearitipropertiesfollowinghaveBracketsLie

fggfgad f

Diffeomorphisms and State transformations

.)(,intsin

.)(

:

.,

,,:

:

0

1

ofsubregionainhismdiffeomorplocaladefinesxthenofxxpoaatgularnonismatrixJacobianthe

IfRinregionaindefinedfunctionsmoothabexLet

Lemma

smoothisandexistsinverseitsifandsmoothisitifhismdiffeomorp

acalledisregionaindefinedRRfunctionA

Definition

n

nn

Example

zxwhere

zhy

uzgzfz

tionrepresentastateNew

uxgxfx

xx

z

yieldszofationDifferentixz

bydefinedbestatesnewtheletand

xhyuxgxfx

bydescribedsystemdynamictheConsider

1

*

**

)(

)()(

:

))()((

)(

)()()(

Frobenius Theorem- Completely Integrable

.,1,1

0

)(),...(),(,,int

],...,[

:int

21

21

tindependenlinearlyarehgradientstheandmjmniwhere

fh

equationsaldifferentipartialofsystemthesatisfyingxhxhxhfunctionsscalarmn

existsthereifonlyandifegrablecompletelybetosaidisRonffffieldsvectorofsettindependenlinearlyA

egrablecompletelyofDefinition

i

ji

mn

nm

jixfxxff

thatsuchRR

functionsscalararethereifonlyandifinvolutivebetosaidisffffieldsvectorofsettindependenlinearlyA

conditiontyinvolutiviofDefinition

m

kkijkji

nijk

n

,)()()](,[

:

,,],...,[

:

1

21

Frobenius Theorem- Involutivity

Frobenius theorem

.,,int

.

,...,:

21

involutiveisitifonlyandifegrablecompletelyissetThe

fieldsvector

tindependenlinearlyofsetabefffLetTheorem

m

02)3(

04

33

22

23

11

213

xh

xxh

xxxh

x

xh

xhx

equationsaldifferentipartialofsettheConsider

.,

2121

321

21

322

31231

21

.,03],[]0312[],[

].,[,mindet

]2)3([]014[

],[

solvableareequationsaldifferentipartialtwotheTherefore

T

TT

involutiveisfieldsvectorofsetthisffffSincexff

fffieldsvectorofsettheoftyinvolutivithecheckusletsolvableissetthiswhethereertoorderIn

xxxxfxf

withffarefieldsassociatedThe

Frobenius theorem- example

Input-State Linearization

.

1..0

0000........1000..010

var)(var

)()(,:

,

,)()(

)()(sin:

lawglinearizinthecalledislawcontroltheandstateglinearizinthecallediszstatenewThe

bA

wherebvAzz

relationiantintimelinearasatisfyvinputnewtheandxziablesstatenewthethatsuch

vxxulawcontrolfeedbacknonlinearaRpismdiffeomorha

Rinregionaexiststhereiflelinearizabstateinputbe

tosaidisRonfieldsvectorsmoothbeingxgandxfwith

uxgxfxformtheinsystemnonlinearinputgleADefinition

n

n

n

Conditions for Input-State Linearization

.,.int

.int

:Re

},...,{)(

},...,{)(

:,,

,)()(:

1

1

casenonlineartheinsatisfiedgenerallynotbutsystemslinearforsatisfiedtriviallyisItuitivelessisconditiontyinvolutiviThe

systemnonlineartheforconditionilitycontrollabaserpretedbecanconditionfirstThe

marksFew

ininvolutiveisgadgadgsettheii

intindependenlinearlyaregadgadgfieldsvectorthei

holdconditionsfollowingthethatsuchregionaexiststhereifonlyandiflinearizedstateinputis

fieldsvectorsmoothbeingxgandxfwithsystemnonlinearTheTheorem

nff

nff

How to perform input-state Linearization

11

111

11

11

11

11

1

1

1)(

)(

,

]....[)()(

0

2,...00

)deg(,)(

.)(

.,...,)(

:

zLLx

zLL

zLx

withtiontransforma

inputtheandzLzLzxztiontransformastatetheComputeiv

gadz

nigadz

nreerelativetheofionlinearizatoutputinputtoleadingfunctionoutputthezstagefirstthefindsatisfiedarebothIfiiisatisfiedareconditionstyinvolutiviandilitycontrollabthewhetherCheckii

systemgiventheforgadgadgfieldsvectortheConstructi

stepsfollowingthethroughperformedbecansystemnonlinearaofionlinearizatstateinputThe

nfg

nfg

nf

Tnff

nf

nf

nff

uqqkqJqqkqMgLqI

)(0)(sin

212

211

Consider a mechanism given by the dynamics which represents a single link flexible joint robot.Its equations of motion is derived as

Because nonlinearities ( due to gravitational torques) appear in the first equation, While the control input u enters only in the second equation, there is no easy wayto design a large range controller.

T

T

Jg

xxjkxxx

lkx

lMgLxf

aswrittenbecangandffieldsvectoringcorrespondandqqqqx

]1000[

)()(sin[

][

3143112

2211

Example system

Checking controllability and involuvity conditions.

001

010

000

000

][

2

2

32

Jk

J

Jk

J

IJk

IJk

gadgadgadg fff

It has rank 4 for k>0 and IJ> infinity. Furthermore, since the above vector fields are constant, they form an involutive set.Therefore the system is input-state linearizable.

Example system- Contd.

Let us find out the state-transformation z = z(x) and the inputtransformation so that input-state linearization is achieved.vxxu )()(

)(cos

)(sin

.,

0000

421234

31123

212

1

11

11

1

1

4

1

3

1

2

1

xxIkxx

IMgLfzz

xxIkx

IMgLfzz

xfzzzfromobtainedbecanstatesotherThe

xzisequationabovethetosolutionsimplestThe

onlyxoffunctionabemustzThusxz

xz

xz

xz

Example system - Contd.

Accordingly, the input transformation is

)cos)(()cos(sin)(

))((

exp)/()(

13112

21

44

xI

MgLJk

Ikxx

Ik

Ikx

IMgLxx

IMgLxa

where

xavkIJu

aslicitlywrittenbecanwhichgzfzvu

.4

43

32

21

ionlinearizatstateinputthecompletingthusvzzzzzzz

equationslinearofsetfollowingthewithupendWe

Example system- Contd.

Finally, note thatThe above input-state linearization is actually global, because the diffeomorphism z(x) and the input transformation are well defined everywhere.Specifically, the inverse of the state transformation is

.

)cos(

)sin(

12424

1313

22

11

everywhereabledifferentianddefinedwelliswhich

zzI

MgLzkIzx

zI

MgLzkIzx

zxzx

Example system- Contd.

Input-Output Linearization of SISO systems

?)(?

int)(?)(

:.

)()()(

sin

ionslinearizatoutputinputonbasedscontrollerstabledesigntoHowiiiionlinearizatoutputinputthe

withassociateddynamicszeroanddynamicsernaltheareWhatiisystemnonlinearaforrelationoutputinputlinearageneratetoHowi

Issuesoutputsystemtheisywhere

xhyuxgxfx

tionrepresentaspacestatethebydescribedsysteminputglenonlinearaGiven

Generating a linear input-output relation

0)(

100)(

,deg:

.deg,,.,

1

xhLL

rixhLL

xifregionainrreerelativehavetosaidissystemSISOTheDefinition

undefinedisreerelativesystemsthecasessomeinHowevertynonlinearithecanceltoudesignthenandappears

uinputtheuntilrepeatedlyyfunctionoutputtheatedifferentitosimplyisionlinearizatoutputinputofapproachbasicThe

rfg

ifg

Normal Forms

)(

),(

),(),(

..

,int]...[]....[

0

1

1

0

)1(21

xatorinstatesnormalorscoordinatenormalastoreferredareandThe

yasdefinedoutputthewith

w

uba

aswrittenbecansystemtheofformnormalthexpoaofodneighborhoaIn

yyy

Let

ii

r

TrTr

Zero Dynamics

.int

.int

int'int,

.,

.),()(

int

dynamicsernaltheofstabilitytheaboutsconclusionsomemaketousallow

willdynamicszeroStudyingzeroatainedmaisyoutputthethatsuchisinputcontrolthewhendynamicsernalssystemthegconsiderinbysystemnonlinear

theofpropertyrinsicandefinecanweHoweverstatesoutputtheondependsdynamicsthisGenerally

formnormaltheofwequationsrnlastthetoscorrespondsimplyionlinearizatoutputinputthewithassociateddynamicsernalThe

)()()(

,,

)(

)()(

,

.,dim)(

,.int

*

1*

xuxgxfx

toaccordingevolvesxstatessystemthedynamicszerothetoingcorrespondTherefore

xhLL

xhLtu

feedbackstatethebygivenbemustuinputoriginalThedynamicszeroinoperatetosystemthefororderIn

zeroatstaysythatsuchbemustinputFurtherRinsurfacesmoothensionalrnthetorestrictedismotionits

whendynamicsitsissystemaofdynamicszerotheThuszeroaresderivativetimeitsofallthatimplieszeroyidenticallisyoutputthethatconstraThe

rfg

rf

n

Zero Dynamics

),0(),0(

int

,),0(

0

,0)0(..,'min

0

0

bau

statesernaltheofonlyfunctionaaswrittenbecanuinputcontrolThe

systemnonlineartheofdynamicszerotheisequationabovethedefinitionBy

w

asformnormalinwrittenbecandynamicssystemtheeisurface

theonisstateinitialssystemthethatgAssu

Zero Dynamics- Contd.

Local Asymptotic Stabilization

systemloopclosedstableallyasymptoticlocallyatoleads

ykykykyLyLL

xu

lawcontroltheThenplanehalflefttheinstrictlyrootsitsallhas

kpkpkppK

polynomialthethatsuchktsconsChoosekwhereykykykvthatassumeusLet

stableallyasymptoticlocallyisdynamicszeroitsandrreerelativehassystemthethatAssume

Theorem

rr

rfr

fg

rr

ri

ir

r

]...[1)(

,.

...)(

tan....

.,deg

:

01)1(

11

011

1

01)1(

1

Example System

.242

,.2

)0(

322

,1deg,2

.intmod30

(0'

3

1222

1

311

222

121

21

22

1

21

22

22

11

systemnonlinearthestablizeslocallyxxxxu

lawcontroltheThereforestableallyasymptoticisthusandxx

simplyisysettingbyobtaineddynamicszeroassociatedThe

uxxxxxdtdy

becauseissystemtheofreerelativetheoutputthistoingCorrespondxxyfunctionoutputthedefineusLet

egratorpureatoingcorrespondeableuncontrollanhasthusanduxx

xisxxxwherexationlinearizatssystemThe

uxxxxx

T

Global Asymptotic Stability

Zero Dynamics only guarantees local stability of a control system based on input-output linearization.

Most practically important problems are of global stabilization problems.

An approach to global asymptotic stabilization based on partial feedback linearization is to simply consider the control problem as a standard lyapunov controller problem, but simplified by the fact that putting the systems in normal form makes part of the dynamics linear.

The basic idea, after putting the system in normal form, is to view as the “input” to the internal dynamics, and as the “output”.

Steps for Global Asymptotic Stability

•The first step is to find a “ control law” which stabilizes the internal dynamics.

•An associated Lyapunov function demonstrating the stabilizing property.

•To get back to the original global control problem.

•Define a Lyapunov function candidate V appropriately as a modified version of

•Choose control input v so that V be a Lyapunov function for the whole closed-loop dynamics.

)(00

0V

0V

Local Tracking Control

)()()(~

]...[

.)1(

tttbyvectorerrortrackingthedefineand

yyy

Lettaskscontroltrackingasymptotictoextended

becancontrollerplacementpolesimpleThe

d

Trdddd

.exp

~

]~....[1sin

.,,0)0(),(

,),inttan(deg

:

101)(

11

1

onentiallyzerotoconvergeserrortrackingtheandboundedremainsstatewholethe

kkyLLL

u

lawcontrolthegubyThenstableallyasymptoticuniformlyisandboundedisexists

equationtheofsolutionthethatandboundedandsmoothisthaterestofregiontheover

tconsanddefinedrreerelativehassystemtheAssumeTheorem

rrr

dr

frfg

dddd

d

d

Tracking Control

Inverse Dynamics

)(),(),()(

)(,0)](....)()([)()(

,01,....,.1,0)()(

.0),()(.)()(

.)(

)0(,sec

)1(

tubaty

satisfymusttuinputcontroltheThusttytytytt

scoordinatenormaloftermsIntrktyty

ttytyeityoutputreferencethetoidenticalistyoutputsystemthethatassumeusLet

perfectlytyoutputreferenceatracktooutputplantthefororderinbeshould

uinputcontrolandxconditionsinitialthewhatoutfinduslettionpreviousbydescribedsystemsFor

rrr

r

Trrrrr

kr

krr

r

.,).(

)(Pr).(

)(,)(

systemtheofdynamicsinversecalledaretheyThereforetyhistoryoutputreferencetoingcorrespond

tuinputthecomputetousallowequationsevioustytoequal

yidenticalltyoutputforinputcontrolrequiredtheobtaincanwetytrajectoryreferenceaGiven

r

r

r

)](),([)()(

ttwtequationaldifferentitheofsolutionistwhere

r

Inverse Dynamics- Contd.

Application of Feedback Linearization to Opto-Mechanics

)))(sin(tan2

(cos)))((tansin2

(sin)( 1212

zxka

zxkbcAxI

For the double slit aperture, the irradiance at any point in space is given as:

= wavelength = 630 nmk = wave number associated with the wavelength a = center-to-center separation = 32 umb = width of the slit = 18 umz = distance of propagation =1000 um

Plant Model

-+ )1(

1s

Motor Dynamics Plant Model

UX2 Y= X1

11

1

2

sXUX

)(sin 21 XcAXY

UXXt

X

122

UXXct

X

222 )(sin

)(1)(sin 2 assumeAXcY

)(1)(sin 2 assumeAXcY

Plant Model

Input-State Linearization

.,

)(sin)()(

)(sin)(sin

)(sinsin

1111

11

1

11

111

111

21

dynamicsloopclosedstableagetcanwegainsfeedbackofchoiceproperBy

zzczfwherezfzkuzkvSelect

zvzzcvu

zzczuThereforeuzzczgetWe

xztiontransformaagU

UXXct

X

222 )(sin

Pole-Placement loop21 xz z

Plant Model

-+ )1(

1s

Motor Dynamics Plant Model

U(x,v)X2 Y

11zKv -

0

Input-State Linearization- Block diagram

22

22222

2222

2222

22

2222222

22

22222

22

22222

2

22

)sin()sin()(sin)sin(

)cos()cos()(sin)cos(

])(sin)[sin(])(sin)[cos(

)sin())(cos(

)sin(])[cos(

)sin()(sin

xxuxxxcx

uxxxxxcxx

xuxxcxuxxcxx

y

xxxxxx

xxxxxxy

xx

xcy

Input-Output Linearization

22

2222

22222

22

222

22

222222

2222

22

222

22

22222

2222

2222

)]sin()cos()}cos(){sin(([sin

])sin()cos([

)]sin()(sin)sin()cos()(sin)cos([

])sin()cos([

)sin()sin()(sin)sin()cos()cos()(sin)cos(

xxxxxxxxxc

xxxxu

xxxxcxxxxcxx

xuxuxxx

xuxxxcxuxxxxxcxx

y

Input-Output Linearization

0])sin()cos([int

sin][

0,1,

])sin()cos([

)(

)(])sin()cos([

22

2

2

2

1

22

2

2

2

22

2

2

2

xx

xxwherespo

gularityatexcepteverywheredefinedislawControlyyeekyvSelect

BAgetweBuAxxwithComparingvy

xx

xx

xfvu

wherexfx

xx

xuy

dd

Input-Output Linearization

).(degint

.

,

:

22

ordersystemnrreerelativebecausesystemthiswithassociateddynamicsernalnoareThere

systemnonlinearthestabilizeslocallycontrollerfeedbackthehence

stableallyasymptoticisdynamicszeroThis

uxxbygivenisDynamicsZero

Zero Dynamics

Conclusion

Control design based on input-output linearization can be made in 3 steps:

•Differentiate the output y until the input u appears

•Choose u to cancel the nonlinearities and guarantee tracking convergence

•Study the stability of the internal dynamics

If the relative degree associated with the input-output linearization is the same as the order of the system, the nonlinear system is fully linearized.

If the relative degree is smaller than the system order, then the nonlinear system is partially linearized and stability of internal dynamics has to be checked.

Homework Problems

2

122

211

1

222

112

21

2

)1(

xyuxxx

uxkxxfordynamicszerotheofstabilityglobalCheck

xyuxxaxxx

xxforcontrolleroutputinputlinearaDesign