Galaxy Spectra - ASTRONOMY GROUPstar-spd3/Teaching/PHYS1002/phys1002_lecture6.pdf · Galaxy Spectra...

Post on 28-Feb-2019

245 views 0 download

transcript

Galaxy Spectra •  Galaxy spectra

–  Continuum –  Absorption Lines –  Emission Lines –  Typical Spectra

•  Elliptical •  Spiral •  Irregular

•  Galaxy motion –  Radial velocity –  Redshift –  Redshift à distance –  Peculiar velocities

•  Galaxy inclination •  Gas, dust and stars

Continuum

•  The  combina,on  of  many  Black-­‐Body  spectra  spanning  a  range  in  temperatures  

•  This  produces  a  fairly  flat  overall  spectrum  

•  The  main  feature  is  the  4000A-­‐break  

I

Blue λ Red

•  Caused  by:  –  blanket  absorp,on  of  high  energy  radia,on  from  metals  in  the  stellar  

atmospheres  –  the  lack  of  hot  blue  stars  

•  Hence:  –  Ellip,cals      =>  A  strong  4000A-­‐Break  –  Spirals                =>  A  weak  4000A-­‐Break  –  Irregulars        =>  No  4000A-­‐Break  

The 4000A-break

Absorption Lines •  Mainly  caused  by  Atoms/Molecules  in  a  star’s  atmosphere  that  

absorb  specific  wavelengths  

•  Can  also  be  due  to  COLD  gas  in  the  interstellar  medium  which  can  EXTRACT  energy  from  the  passing  radia,on  

ATOMS ATMOSPHERE

CORE RADIATION

•  Caused  by  gas  being  ionized  and  heated  and  then  re-­‐radia,ng  at  specific  allowed  wavelengths  

•  Stars  form  from  gas  so  are  oSen  embedded  •  Young  stars  ionise  gas  which  releases  radia,on  at  a  specific  

wavelength  as  it  recombines  

Emission Lines

GAS

Stellar spectrum

Emission lines

M101 Emission  nebulae  (HII  regions)  in  spiral  arms  

Absorption / Emission Lines •  Absorp,on  Lines  

–  Need  metals  in  stellar  atmospheres  or  cold  gas  in  the  interstellar  medium  

•  Implies  –  Old  stellar  popula,on  =  old  

galaxy  

•  From  –  Ellip,cals  –  Spiral  Bulges    

•  Emission  Lines  –  Need  very  hot  gas  and  O  and  

B  type  stars  

•  Implies  –  Newly  formed  stars  =    star-­‐

forming/young  galaxy  

•  From  –  Spiral  Disks  –  Irregulars  

Typical Spectral features •  Absorp,on  

–  Ca(H)      =  3933.7A  –  Ca(K)      =  3968.5A  –  G-­‐band  =  4304.4A  –  Mg                =  5175.3A  –  Na                  =  5894.0  A  

•  Emission  –  [OII]  =  3727.3A  –  Hδ          =  4102.8A  –  Hγ          =  4340.0A  –  Hβ          =  4861.3A  –  [OIII]  =  4959.0A  –  [OIII]  =  5006.8A  –  Hα          =  6562.8A  –  S2            =  6716.0A  

Example Spectrum: Elliptical

CaH&K

G-Band

Mg Na

Strong 4000A-Break

S2

Strong  absorp6on  lines  due  to  metals  in  the  stellar  atmospheres  of  a  mostly  low  luminosity  stellar  popula6on.  No  evidence  of  any  emission  lines  and  hence  no  young  stars  and  no  gas  

Some  emission  and  some  absorp6on  indica6ng    

both  a  young  and  old  stellar  popula6on.    

Example Spectrum: Spiral

[OII]

CaH&K

[OIII]

S2

Mg

4000A-Break

A  strong  emission-­‐line  spectrum  indica6ng  many  hot    young  stars  hea6ng  the  gas  which  is  re-­‐radia6ng  at    specific  wavelengths  which  depend  on  the  chemical    composi6on  of  the  gas  

Example Spectrum: Irregular

[OII]

[OIII]

S2

No 4000A-Break

Radial Velocities •  Most  galaxy  spectra  are  REDSHIFTED,  which  means  their  spectral  

features  are  offset  compared  to  those  measured  for  gasses  in  the  lab  

•  i.e.,  characteris,c  combina,ons  of  lines  are  systema,cally  offset  to  longer  wavelengths  

•  This  is  interpreted  as  a  DOPPLER  shiS  and  implies  that  galaxies  are  moving  away  

•  Posi,ve  veloci,es:  RECEEDING    •  Nega,ve  veloci,es:  APPROACHING  

                                                                                                        or  

cv!

=!

""

ccv

NCALIBRATIO

OBSERVED +=

!!

Example Radial Velocity

OII is at 4000A Hα is at 7030A

OII

km/s974,21)372737274000()c(v

CAL

CALOBS =!

=!

= c"

""km/s500,21)

6563467c(v ==

GALAXY  IS  MOVING  AWAY  AT  ABOUT  21,750  km/s  

d = vHo

   

Reminder:  Cepheid  P-­‐L  rela,on  

•  Well studied stellar objects •  Very bright (Mv ~ -2) •  Pulsate regularly (~ few days) •  Pulsation period depends on luminosity •  P-L relation calibrated to 220 stars via Hipparcos parallax distances (1997) •  Measuring the pulsation and apparent magnitude for a distant Cepheid

provides a direct distance measurement given a known P-L relation.  

RedshiS  •  We  now  know  the  Universe  is  expanding  (see  later  lectures)  •  An  expansion  implies  a  stretching  of  space-­‐,me.    •  The  more  space-­‐,me  there  is  between  you  and  an  object  the  faster  it  

will  appear  to  be  moving  away.  •  It  is  the  expansion  which  causes  a  galaxy’s  spectrum  to  be  

REDSHIFTED:  

STATIONARY:  

DOPPLER  SHIFT:  

REDSHIFT:  

REDSHIFT  IS  NOT  THE  SAME  AS  DOPPLER  SHIFT  

RedshiS  •  A  useful  parameter  for  cosmology  is  the  redshiS:  

•  This  is  analogous  to  the  defini,on  of  Doppler  shiS  such  that:                                from  which  follows:  

•  Although  this  is  the  wrong  interpreta,on  of  redshiS  it  is  a  good  approxima,on  for  low-­‐z  (z  <  0.1)  

•  Hubble  constant  =  rate  of  expansion  in  units  of  (km/s)/Mpc  –  Current  value  ~75  km/s/Mpc  

oo

oz!!

!!! "

=#

=

cz v!

oHzcd =

Hubble  constant  

•  Using  Hubble’s  Law  (which  we’ll  discuss  more  later)  we  can  easily  es,mate  distances  from  a  galaxy’s  measured  redshiS.  

   e.g.,  If  H0  =  75  km/s/Mpc  and  the  redshiS  is  measured  to  be  0.1  what  is  its  distance  ?  

   This  implies  that  for  example  its  [OII]  line,  normally  at  3727A,  occurred  at  4100A  

Calcula,ng  distances  

MpcHzcdo

400751031.0 5

=!!

==

Peculiar  Veloci,es  •  Gravita,onal  aprac,on  between  galaxies  and  larger  objects  

(clusters,  groups,  superclusters,  filaments)  •  Velocity  we  measure  is  not  just  the  expansion  of  the  universe    

•  For  example  the  MW  is  falling  into  Virgo  which  in  turn  is  falling  into  The  Great  Apractor.  

•  If  we  know  a  galaxy’s  peculiar  velocity  we  can  correct  for  this  addi<onal  velocity  component.  

PECULIARLRECESSIONARADIAL VVV ±=

Peculiar  Veloci,es  •  What  we  measure  from  spectra:                    

                  VRADIAL  or  VLINE  OF  SIGHT  

•  Objects  velocity  w.r.t.  our  surroundings:                     VPECULIAR    or    VINFALL  

•  Velocity  due  to  expansion:                     VRECESSION  or  VEXPANSION  

VINFALL  

VRECESSION  

VBULK  VBULK  

VIRGO  

THE  GREAT  ATTRACTOR  PECULIARLRECESSIONARADIAL VVV ±=

Example  •  The  MW  is  falling  towards  Coma  at  Vinfall  =1000km/s.    •  Distance  is  50  Mpc  (from  Cepheids)    •  If  the  redshiS,  z  =  0.01,    what  is  H0  ?    

MpcskmHdVcz

dVH

cVV

cVz

o

INFALLRECESSIONo

INFALLRECESSIONRADIAL

//805010003000

=

+=

+==

!==

Note:  Be  very  careful  with  the  sign  of  VINFALL  &  VPECULIAR,  it  is  intui,ve    Typically  VINFALL  is  subtracted  but  for  VPECULIAR    it  will  depend  on  the    direc,on  of  the  peculiar  velocity  (towards  us=  -­‐ve,  away=  +ve)  

Galaxy Inclination

FACE-ON EDGE-ON Inclination=0 Inclination=90 Majority  of  galaxies  are    somewhere  in  between  

o o

b=Minor Axis

a=Major Axis

Calculating the Inclination •  Assuming  galaxies  are  circular:  •  Inclina,on,  i,  is  given  by:  

•  a=b,  i=0  •  b=0,  i=90      NB:  a  is  always  measurable  

abi =)cos(

b

a i

o

o

Line of sight velocity •  When  we  measure  the  rota,onal  velocity  from  a  spectral  

line  we  need  to  correct  for  inclina,on.  

 

   Hence  if,      i=90  ,  Vobs  =  Vrot  

   i=0  ,  Vobs  =  0   )sin(iVV OBS

ROT =

b

a i Vobs

i

Line  of  sight  Velocity=Vobs  

Example    A  long  slit  spectrum  aligned  along  a  galaxy’s  major  axis  indicates  a  

varia,on  in  the  [OII]  line  of  5A,  The  midpoint  of  the  [OII]  line  is  observed  to  be  at  3900A  and  the  major-­‐to-­‐minor  axis  ra,o  is  3.  What  is  the  rota,onal  velocity  of  the  outermost  stars  ?  

01 5.70)3/1(cos == !i

skmi

VV

skmcV

OBSROT

OBS

/204)sin(

/19210339005.2 5

==

=!!="

=##

Note: 5/2 A

Note:  λ=3900  and  not  3727  (as  reference  is  to  the  galaxy  centre)  

Stars, Dust and Gas in Galaxies •  Dust  mass  is  negligible  but  can  block  up  to  90%  of  the  light  and  

provides  a  good  indica,on  of  where  the  fresh  stars  are  •  Stars  form  from  gas  in  galaxy  •  In  the  high-­‐density  regions  the  gas    is  converted  into  Stars  

–  Elliptical: very little gas content –  ~ all gas converted into stars =>

–  Spiral: some gas content – most gas converted =>

–  Irregular: lots of gas –  little gas converted =>

!

MHI

MSTARS

= 0.01" 0.1

MHI

MSTARS

= 0.1"1.0

MHI

MSTARS

#1.0

Warm  dust  and  starlight  in  Antenae  galaxy  

NGC1512  

Op,cal  and  radio  image  of  NGC891  

Distribution of Gas and Stars

STARLIGHT GAS (HI)

M82

NGC 3077

M81