GAMMA BASED POSITRON SOURCE OPTIONS FOR ILC Klaus Floettmann DESY

Post on 13-Jan-2016

27 views 2 download

Tags:

description

GAMMA BASED POSITRON SOURCE OPTIONS FOR ILC Klaus Floettmann DESY. Contents:. Basics of gamma based sources Status of work Who wants to Do What?. Conventional vs. Gamma Based Source. Photons 10-20 MeV. Primary Beam. Capture Optics. Target. thin target: 0.4 X 0. - PowerPoint PPT Presentation

transcript

K. Floettmann KEK, Nov. 13-15, 2004

GAMMA BASED POSITRON SOURCE OPTIONS FOR ILC

Klaus Floettmann

DESY

K. Floettmann KEK, Nov. 13-15, 2004

Contents:

§ Basics of gamma based sources

§ Status of work

§ Who wants to Do What?

K. Floettmann KEK, Nov. 13-15, 2004

Conventional vs. Gamma Based Source

Target

Photons 10-20 MeV

Electrons 0.1-10 GeV

Primary Beam Capture Optics

thin target: 0.4 X0

thick target: 4-6 X0

K. Floettmann KEK, Nov. 13-15, 2004

Parameters of existing and planed positron sources

rep rate# of bunches per pulse

# of positrons per bunch

# of positrons per pulse

TESLA/ILC 5 Hz 2820 2 · 1010 5.6 · 1013

NLC 120 Hz 192 0.75 · 1010 1.4 · 1012

SLC 120 Hz 1 5 · 1010 5 · 1010

DESY positron source

50 Hz 1 1.5 · 109 1.5 · 109

K. Floettmann KEK, Nov. 13-15, 2004

The Problem: Target Heating

MeV cm

g

2

2

1 capture efficiency

heat capacity

source area

deppos

dep

ET N

c A

E

c

A

K. Floettmann KEK, Nov. 13-15, 2004

Number of Positrons / Source Area

Example of the rotating target for TESLA:

0.8 m diameter

1250 revolutions per minute

52 m/s on the circumference

4 cm in a pulse train of 0.8 ms

Conceptual design for a rotating feed-through:“A Megawatt Electron Positron Conversion Target – A Conceptual Design” 1st EPAC Rome 1988

K. Floettmann KEK, Nov. 13-15, 2004

Heat Capacity of the Target Material

Low Z materials have a higher heat capacity (Dulong Petit Rule)

but

high Z materials give a higher positron yield.

K. Floettmann KEK, Nov. 13-15, 2004

Positron Yield vs. Target Thickness for a Photon based Source

"Structural Modeling of Tesla TDR Positron Target," Werner Stein, John C. Sheppard, July 2002 (SLAC-TN-03-043)

K. Floettmann KEK, Nov. 13-15, 2004

Radiation Damage Material Test at BNL

collaborative effort of SLAC and other labs

NOTE: Gamma based sources produce significantly less neutrons than conventional sources.

K. Floettmann KEK, Nov. 13-15, 2004

How to Increase the Capture Efficiency?

Increase the acceptance of the capture optics

requires a Predamping ring with large acceptance

Improve the positron emittance

photon based positron source with thin target

K. Floettmann KEK, Nov. 13-15, 2004

Transverse momenta

conventional source

thin target source

K. Floettmann KEK, Nov. 13-15, 2004

Comments concerning the DR design

Present situation: on energy acceptance is ok, off energy acceptance is too small

• improve off energy acceptance

• investigate possibilities to reduce the energy spread by scraping or removing correlations

Better communication between DR people and positron people is required

• assumed positron distributions seem to be too pessimistic sometimes

• realistic distributions should be used as input

Operation of a gamma based positron source without predamping ring should be possible

K. Floettmann KEK, Nov. 13-15, 2004

Undulator Based Positron Source

• Undulator length depends on the integration into the system, i.e. the distance between undulator exit and target which is required for the beam separation:

• ~ 50-150 m

K. Floettmann KEK, Nov. 13-15, 2004

Integration of the Source into the BDS of TESLA

Auxiliary and Commissioning source

“Conceptual Design of a Positron Pre-Accelerator for the TESLA Linear Collider” TESLA-99-14“Conceptual Design of a Positron Injector for the TESLA Linear Collider” TESLA-00-12

K. Floettmann KEK, Nov. 13-15, 2004

Low energy operation

0.0

0.5

1.0

1.5

2.0

2.5

50 100 150 160 200 250Electron energy (GeV)

po

sitr

on

/ele

ctro

n y

ield

safety margin

used positrons

5 Hz operation2.5 Hz operation

K. Floettmann KEK, Nov. 13-15, 2004

Low energy operation

0.0E+00

5.0E+33

1.0E+34

1.5E+34

2.0E+34

2.5E+34

3.0E+34

3.5E+34

4.0E+34

100 150 200 250 300 350 400 450 500

Ecm (GeV)

Lu

min

os

ity

(c

m-2

s-1

) scaling (fundamental)

nominal5 Hz operation

2.5 Hz luminosityoperation

High-energy optimised sourceLow-

energy optimised source

NOTE: Higher currents are possible at lower energy if the source is integrated into the BDS (limited by DR)

K. Floettmann KEK, Nov. 13-15, 2004

Auxiliary and Commissioning Source

500 MeV electron source provides low intensity (~1%) e+ source but same bunch train• commissioning source

• standby source for MD when e- system is down• e-e- and physics options source

K. Floettmann KEK, Nov. 13-15, 2004

Design of the Positron Preaccelerator

K. Floettmann KEK, Nov. 13-15, 2004

The capture optics

x

x’

x

x’

1

1

i

i

BB z

g z

g P

e B

low frequency (L-band)

Ø large iris radius

Ø long wave length

K. Floettmann KEK, Nov. 13-15, 2004

Adiabatic Matching Device - AMD

Very basic design considerations by BINP Novosibirsk (internal report):

• long pulse seems to be possible

• problem is to achieve the required field quality

K. Floettmann KEK, Nov. 13-15, 2004

NC High Gradient Cavities (solenoid focusing)

Design by INR Troitsk

K. Floettmann KEK, Nov. 13-15, 2004

Optical functions in the Separator Section

• separation of photons, positrons and

electrons

• longitudinal collimation of the positron bunches

• transverse collimation can be done in the

solenoid section

aim for no particle loss during injection into

DR

K. Floettmann KEK, Nov. 13-15, 2004

NC Low Gradient Cavities (triplet focusing)

Design by INR Troitsk

K. Floettmann KEK, Nov. 13-15, 2004

Phase Space at the exit of the Preaccelerator

K. Floettmann KEK, Nov. 13-15, 2004

Positron Transfer Line

K. Floettmann KEK, Nov. 13-15, 2004

Acceleration to 5 GeV in SC Cavities

K. Floettmann KEK, Nov. 13-15, 2004

Polarized Positron Sources

For the production of polarized positrons circularly photons are required.

Methods to produce circularly polarized photons of 10-60 MeV are:

• radiation from a helical undulator

• Compton backscattering of laser light off an electron beam

K. Floettmann KEK, Nov. 13-15, 2004

Why polarized positrons

Physics potential beyond the scope of this workshop but we can gain a factor of two in the interaction rate (eff. luminosity) by using

polarized electron and positron beams

K. Floettmann KEK, Nov. 13-15, 2004

Polarization Transfer in Pair Production

K. Floettmann KEK, Nov. 13-15, 2004

Super Conducting Design

• Ribbon-wire wound in a double helix

Current

Current

K. Floettmann KEK, Nov. 13-15, 2004

Polarization vs. Emission angle

K. Floettmann KEK, Nov. 13-15, 2004

Model of the Prototype Helical Undulator at Daresbury

K. Floettmann KEK, Nov. 13-15, 2004

Model of the Prototype Helical Undulator at Daresbury

K. Floettmann KEK, Nov. 13-15, 2004

Compton Backscattering based Positron Source

K. Floettmann KEK, Nov. 13-15, 2004

GLC Polarized Positron Source Design

K. Floettmann KEK, Nov. 13-15, 2004

Multi Collision Point Layout

K. Floettmann KEK, Nov. 13-15, 2004

GLC Collision Region

10 collision sections, with 20 collision points each:

200 collision points

K. Floettmann KEK, Nov. 13-15, 2004

E-166 Demonstration Experiment for a Polarized Positron Source

About 47 members from 17 institutions:

Brunel, CERN, Cornell, DESY, Daresbury, Durham, Jefferson, Humboldt, KEK, Princeton, South Carolina, SLAC, Tel Aviv, Tokyo M.U., Tennessee, Wasada, Yerevan

K. Floettmann KEK, Nov. 13-15, 2004

E-166 Demonstration Experiment for a Polarized Positron Source

• Final Focus Test Beam (FFTB) at SLAC with 50 GeV Electrons.

• 1 m long helical undulator produces circular polarized radiation of up to 10 MeV.

K. Floettmann KEK, Nov. 13-15, 2004

Undulator Parameter for Polarized Positron Source

Parameter TESLA E-166

Length ~150 m 1 m

Beam 200 GeV 50 GeV

Period 14 mm 2.4 mm

B-field 0.7 T 0.76 T

Energy of first Harmonic

20 MeV 9.6 MeV

Positrons/bunch 3 · 1010 2 · 107

K. Floettmann KEK, Nov. 13-15, 2004

Pulsed Undulator for E-166

• Inner diameter 0.89 mm

• Magnetic field: 0.76 T

• Pulsed current: 2.3 kA

• Rate 30 Hz

K. Floettmann KEK, Nov. 13-15, 2004

E-166 Demonstration Experiment for a Polarized Positron Source

• Conversion of photons to positrons in 0.5 X0 Ti-target• Measurement of polarization of photons and positrons by Compton transmission method• Expected polarization ~50%

K. Floettmann KEK, Nov. 13-15, 2004

E-166 Demonstration Experiment for a Polarized Positron Source

• E166 is a demonstration of production ofpolarized positrons for future linear colliders

• Uses the 50 GeV FFTB at SLAC• Approved by SLAC in June 2003• All components or prototypes work properly• Installation of total experiment in FFTB tunnel in

August 2004• First data taking run in October 2004• Second data taking in February 2005

K. Floettmann KEK, Nov. 13-15, 2004

Experiment@KEK

K. Floettmann KEK, Nov. 13-15, 2004

Experiment@KEK

K. Floettmann KEK, Nov. 13-15, 2004

Experiment@KEK

1.) Production of polarized γ‘s and polarized e+

• pol. γ: finished 2002

• pol e+: underway

2.) Polarimetry

• polarimetry of short pulse & high intensity γ rays established

• same method applicable for polarized positrons

K. Floettmann KEK, Nov. 13-15, 2004

Who wants to Do What? (to be completed)

ASIA• contributions to E166

• conceptual design for a polarized positron source for ILC (simulation study) KEK: Y. Kurihara, T. Okugi, J. Urakawa, K. Yokoya, T. Omori Tokyo Metropolitan Univ.: K. Dobashi National Institute of Radiological Sciences: I. Sakai Waseda Univ.: T. Aoki, M. Washio, T. Hirose Sumitomo Heavy Industries: A. Tsunemi

• experimental production of polarized positron at ATFKEK: Y. Kurihara, T. Okugi,  J. Urakawa, T.Omori Tokyo Metropolitan Univ.: A. Ohashi National Institute of Radiological Sciences: M. Nomura, M. Fukuda Waseda Univ.: I. Yamazaki, K. Sakaue, T. Saito, R. Kuroda, M. Washio, T. Hirose

K. Floettmann KEK, Nov. 13-15, 2004

Who wants to Do What? (to be completed)

Europe• EuroTEV (s. talk by E. Elsen)

• contributions to E166

• interest to continue work on preaccelerator: beam dynamics, structures, diagnostics INR Troitsk: V. Paramonov

• synergies with FEL work at DESY: NC structure design, code development, beam dynamics

K. Floettmann KEK, Nov. 13-15, 2004

Who wants to Do What? (to be completed)

USA• E166

SLAC, collaborators: John Sheppard et al.

• conceptual positron source design SLAC, collaborators: John Sheppard et al.

• material tests SLAC and collaborators: John Sheppard et al.

• more from SLAC ??????

• beam dynamics simulations/experiment ANL: Wei Gei et al. Fermilab: Philippe Piot et al.

K. Floettmann KEK, Nov. 13-15, 2004

Workshop Announcement

'Workshop on Positron Sources for the International Linear Collider‘

This workshop will discuss relevant issues for positron production for the ILC

Daresbury Laboratory

11th to 13th April 2005

http://www.astec.ac.uk/id_mag/ID-Mag_Helical_ILC_Positron_Production_Workshop.htm