GEM Collaboration Council Meeting at the...

Post on 16-Aug-2020

1 views 0 download

transcript

GEM TN-91-21

GEM Collaboration Council Meeting at the SSCL

October 2, 1991

Abstract: Transparencies from the GEM Council Meeting at the SSCL on

October 2, 1991 are presented.

******GEM****** Collaboration Council Meeting

October 2, 1991 SSCL 9:00 AM

Building 4 Auditorium

Agenda

9:00 am General Business (Barish and Willis) 9:30 am Discussion of Detector Decisions

11:00

12:00

1:00

1:30

2:30

- -Magnet (Stroynowski) - -Muons (Taylor/ Ahlen) - -Calorimeters (Brau/ Adair) - -Inner Tracking (Morgan/Baltay/Musser) - -Electronics-DAQ (Shaevita/Marlow)

LOI Physics Questions (Paige/Lane)

Lunch

LOI plans (Barish, Yost)

Engineering/Costing (Sanders/Marx)

Adjourn

C. 11..i..,.,,~,,;~ Co"'.-.c.' I Mae. ti~

o,t 2.1 Jct4t I

****** GEM ****** Collaboration Council Meetinq

October 2, 1991 SSCL 9 AH

Buildinq 4 Auditorium

Aqenda

? aa ~ral Buain..a (B&riah and Willis) ?:30am Diacuaaion of Dete.c:tor Decisions

--MaqlMtt (Stroynowalti) --Muona (Taylor/Ahlen) --Calorimeters (Brau/Adair) --Inner Tracking (Morqan/Baltay/Musser) --Electronics-OAQ (Shaevitz/Marlow)

:1:00 LOI Physics Questions (Paiqe/Lane)

l2:00 Lunch

1:00 LOI plans (Barish, Yost)

1:30 Engineering/Costing (Sanders/Marx)

2:30 Adjourn

After 3pm there will be a meeting of the Executive Committee. some of the subsystems groups will be having meetings in breakout room: After the Executive Co.-.ittee meeting there will be a practice session or PAC presentations

Thursday October 3 Morning Session will be in the Auditorium and will be open. GEM presentations will be from 9:30 - 12:00 All are welcome and encouraged to attend.

Afternoon sessions will be closed or involve a small number of GEM representatives (eq. Exec Committee and Spokesmen)

-------------------------------------------------In addition to the Council meeting and the PAC meeting, the following sub-group meetings are currently scheduled:

Calorimetry Oct 1 Auditorium Muons Oct 1 Cafetorium Computing Oct 4 Cafetorium DAQ/Trigger Oct 4 Strategy Room (in center section of B4) ..,.. .. A c,..11.t J Octf 1 1)1.C \ C.••..t• ~~ /t.'"" ,

These room assigru.6nts are tentative. Please check-che s1qn at the Use1 Office for possible changes.

_f,.. •fls•P 1'c.Aw) ' -

~u '-'1 ~I - s U'WftlC cOI

·Na-. 1>.ucr.,. 1> .. f ,~._ Octuhr CJ1c~C.. Tec."~oloJ<U •'

l•O rr;J \ ... u. ('! ~' 1'u r: B c.e. -.i

[~t"'' ,2.. 'P.,,.,tt f.f"' Ma!! "r.+tc.r)

ik i' J .re." t .t .. It Sf•~ s t"' c,. I~ t c..JZ t-*"'- ! • Hatt If-,+ •" ''"'~"-..t.. • S,...j1. t.\ I SC Ma,,"•t • "'•.l.s ~·b ; •"s'";.,,~ s .. ,,,r-1:

• •

• R.-1 Z> + E"'-''"~.,.,·"'J t..,11 /iri-

.• ' E~r 1'111 AJ • .., ,,_1111 ( fJJll•-y ..,,t,.,..~c.,.)

CM"1 ,.J: a.711 _,, 111]

• T"';~ .... R .. ,~,.... ( 'lj.,.,;.~I Wi/l,"s J s- ... J,.r.1) f1ar~

• C.,,.,., ''"'s~c"

• ' .. !'"~'·" ft..-t D P '•"'1 {B...u._, ... )

1 f t ¥ 'D~./ t Lo :t - N • ~ '-'. }

"'B._f..,-& N ovt~ ~41"' - Calf~ e..,.,.c,; l M~ -

~I ~1 ._,

,

-,

w 0'8£

1) MA,NI,- te pt>•c•1~ wl t.6' E "I'"•& M:y 1).J'tj.,. •

J) MutNS

- , .. ,.... ' '2. '*''""'"., ., , • ., ~., FV -.~

.. ,.. .. , .. " s a t•c'-• '•1•.:. .,..,. , .. tptMC.W~ ,....,,,,,, ... ,,

•M11j.._~ foc-..Doti\, ~.~.1.,,-, ./et> f'•4-W• ,., (..,..,...._'a4c,1

.r) ,-,_Ac.tfA • '•MJ -t•''"•'•t•ir lu '"''•C,

• f~~a. - (-1t~Mrt"'$ ~ fl.~~J.s It ... 1)

hnl Engineeriq RAD

~.Costing 1.25

,. . • 1.25 1.5

.._s,_ .5 2.0

Caley" I )' - .s 3.0

11 ·~ .s 2.0

Tlig:r/ACQ 0.5

Resene 1.0

-J'1~

,

Toi.II ~ 4.0 '

__,/ ' -

t l I

e"''''"

SSCL PAC

Co-Chairs Barish, WIHll

I

Subsystems

1-Cllorlmeter-Brau, Adair

1-Muon1-Ahltn, F. Taylor

1-Magnat-Stroynow1k~ Mashkt

I I

LOI Task Foret

1--Phy11cs--Palge, Lane, Zhou, BrlRSOn

""Detector Parameters, Cost, Schedule Mn, Sanders

1-Tracking-Morgan, Musser, BaHay I-Lot 0ocument-Yo11, Durden,

1-Trigg«/DAO:-Marlow, Shatvhz

.. Computing for Simulation and Anelysls--Mcfarlant, Newman, Zhu

Slndtrs, Marx

1-RlD, EnglnHrlng, T11t1, Btems-llattay, Chen, Gordon, Mockett, Webb

.... Collaboratlon Growth l Llft-­Ftrtltl, Sulall, Chin, Winn (USSR) (Chhl) (Kortl) lie.

I Executive CommmH

Battay Marx Plaall Samlos Sand•s Sulik

hd/7·17-91

I<... ;) I llO.IV'HJ(AI;) N

/0 /.t/ 'j (

])£5/c:;.N TE"A+f K l'f I LL.NL. { llkHl='l ( SSCL + 1-f~NET· 7f.Cl(NI Cir'- 1'A-ll.£'t..

Ip.I l'ftftL.t.'f ~ Of(/Oli 'S : V ,,.SHt£L.0£b M~rt*

SHIEl.DCD M~t>#ET

-) bot1,<..£ eo11- 0PT1oi/

b) ~ SklEL'l:>

C.OS'f I p EM I &tLt1" '{ , RI SK.S ~CftE'l>u1.1: I

MAGNET DESIGN PARAMETERS

Centeral induction (T) Inner radius, cryostat ("free bore") (m) Outer radius, overall (m) Inner length, door to door(m) Measurement lever arm (m) Mass of windings (t) Mass of cold structure (t) Mass of cryostat vessel (t) Mass of iron poles (each) (t) Radial pressure on windings (kPa) Stored energy (GJ) Inductance (H)

Single 0.8 8.3 9.5 29 3.8 440 330 550 2950 260 1.8 -1.5

Double Coil 0.8 8.3 12 29 3.8

500/700* 450 845 7000

390/-110* 4.1 -3.3

•outer-coiVinner-coil

MLL£ROl21.3.lt

~) The Decision Group approved the recommendations of the Magnet Technical Panel to proceed with the single superconductiong coil option for the LOI. This option is significantly less expensive then either the two-coil system or the iron-shielded system. It also presents minimal technical rlsks. The unshielded coil can be used without violating any existing enviromental or safety regulations. It will produce a fringe field of up to about 35 :~uss at the surface above the experimental hall with the area of about 180 by 200 m where field will exceed 10 gauss. Such area can be marked by fence or hedge. Higher fringe fields are expected in the experimental hall, where local shielding of sensitive equipment and special handling of ferromagnetic tools will be necessary. There are ample examples of facilities operating with substantial fringe fields. These range fro~ MRI hospital installations, through Bubble Chamber's magnets to magnetic fusion confinement devices (MFTF, HFTF and FENIX at LLNL, ALCATOR C-MOD at MIT Plasma Fusion Laboratory and others). Proof of existance of equipment working in such fringe field is available.

The base-line design for the LOI will consist of the central coil with straight poles. It has been recognised that the field integral in the forward direction is too small. Ideas for improvement of the field at small angles exist, but the engineering work on such options will te postponed for later part of this year. This decision is motivated by the limited funds and time available and by desire to produce properly eng neered and costed base-line design for the LOI.

Si~ale coil option allowes for future upgrades of the muon system by placing additional chambers outside the coil. No work is planned on such option for the LOI.

cor the LOI, the base-line design will be optimized for the cost, size and field value producing the same muon ~easurements resolution.

• ~OOLlt.J G- - rlA-"Nl.ftL ~1'V(C:11V~ P.LOl.J ( Tf{E~f'\~£. $Yf1tofl/}

- c..lll{OG-EA#lC.. S'fSTE:'l1 JA./t'f 6£ Cl>llPLED /?1t-Trct.rl£D

otl TlfE kCC.t..0.lri-C. Cl.'(o Srs7E11

• C...ON'DvC..,-Of2. - C.LOS.Et..'( CDIJPL£I> TO THE 111\-~ll F!rc.7U/JJ.llf'J.

Pe..ocess

- ."t~N'( 0P'i10N'~ WOIJt_O uo(.~

- S ft P E7'f ~ All.G-1,t L Prf..G-ESf Pt«. '' ~P€-,,., - CON•vtT ''

- !:>it.DrlG- ltECOtotl'tE..-~M""t41111 Foll ~~D

• .SC.HG:DVLE' - I>E'PE"l>S Orl MlrtlVFl'tc-71JP.l.tfQ. SCHE:HES ,+tt'J>

f' CZ..OC.11 l.E ME:rri P Llf,r J

~ If( C.{l.£Ase b r#'VM.6Elt.. OF PACA~'- PB-ik s ~tlt> tt.E PA-6it.1tfrTE'P aJ#'l.VOrlE#ft ~ >

- ~frt1>lrfG- 111 ~Gc:noJ S

- N'O 1='1£Ll> 1e~T1"<> A:T" THE Svtl..l=AC€ - 1..0f'\fl..E1"'orJ 10/9,

1.9 cm

FIGURE I MAGNET NATURAL CONVECTION

'

(THERMAL SYPHON) LOOP

• t

1000 liter MAGNET HELIUM SUPPLY -

QUENCH/VENT BURST DISC/RELIEF

15 cm DIA

(' 1.2% QUALITY

COOLING TUBE CROSS SECTION

52 COOL! NG TUBES --..._i

U.9 cm DIAl

SUPPORT CYLINDER

7.5 cm DIA ~--

10 cm DIA

SUPPORT CYLINDER

5 cm DIA

4..LZ:J H 0' ""' _, 1 015195 6 3 1 21I/94 2 41419 5 2

011s1all w1f'lding wind coil #2 wind coil •I convert winding assemble coil assembly tooling

' " 12.68 10125/9/

ru 3 811/94 4

81

il.U ,,,.,,an bobbin manul lab bobbin #1

loo ling

112 7 68 7125f95 7.68 !L2fil_! 3

install coil assambly tooling stalion

10125195 14.68

!lll.:..U 3 811194 3

mstall shield fab lab inner tooling shield #1

121 - - I 4.68 3/23195 4.68

UllL!U 3 811/94 3 ,r1slaR vac vessel lab lab oular vac

tooling vesset •1

'21 ~ 1 .' 9 4 4.68 3123/95 4.68

I

E arliesl Start r-

l atesl Finish

!L.Z.11.U install test stand and

•1,,R/QR

GEM Magnet As••mblv Schedule CVJ Ill

8127191

looting

Duration

Slack

6

17 RR

station lo assembly station

• 2 ~

\68 1125// 7.68 2126196 7 68 8128196 .. // 4 68

1211194 4

~\ lab bobbin #2

11124/95 '\ 7 68 1 2

21119 5 6 assemble coil assembly 11

3 •

I _-•i26/~/' 8.68

11/119'4 3 2/1195 3 514/95 .~

lab outer shield lab inner shield / lab oular shield #2

• 1 ._ #2

123195 I. 68 912\95 f'"""' I 4.68

1111194 2 1/2195 4/4/95 2

lab inner vac fab ouler vac vassal lab inner vac vassal #1 #2 vassal •2

5/2 4/9 5 4.68 8/24/r 4.68 10/25195 4.68

8/4/95 4 4/8/96 4 illlll

complete and test coil assy # 1 complele and test coil mag coil assys assy •2 completed

2130196 4 ·68 12130£96

0

8. 72

- -':;f·~~ -

~i .I I' - 5· . .I .

"' /

"' ~ /

._,

I /

• • ' / ,

I I I

I I I

I I

/ '

I "' w -z w u z § c

i "' "' Q_ 0

~, 1-•1;------,

'"" ' ..

~ \, I II s • " ... 0 c ~

'\ ... ·, ·, I II

~ s ...

3 " I II ~ ·,_"' ~

I II .. ~ ~

"' ~ c ~

~ ~ I II ~

$ o'

• , . ' '

..... ,_,. ·-- - , w -... ' ,"t, --

11-r , ·: -· - _... . ·"" __ (.1-':rt• ... ti., .. ;: ;i

11r:r1= 1 t1FIF 1 'F Ew1,.. 1i-r '-L."'-

A L.C.A'T"o~ C.-~ t> It.,- Ml T

LC..T

M ft!

- Ficl..'D -1 GA-v~s.

.- NO ()@.ll'1~vS OTHEIZ.

A"r H. l 6'.-H 'r 0 J::

HEA-1.. Tl-f 1-t A-2 A~t> $

-·-t" ' -- .

• orr1or1s vrJf)Et., srvoy 'PENC.e A-Rl>'.JN 'i> S" G-Avs..s. PER.1 H€TEI{

- flE~T(t.IC.rEc fr<.C.ES-S. Folt. P€OPL-E:" HITl1 PA-C€f'f;H::c~.S.

- StUE1..l>1rlG- Of! T~t C.O\ll'IT1Plfr 1-iDV~e (-.j.lso/:.)

- ~Hl:LC!N'C- VF ~vll..FAc.E L-l 1Ti1 1R..c,J Pt..A-IES -.. 1 . , . ~ .· . ;. ' - - , ... , . .' .. ~ . . . . . ... . .. .

'

'- ~ PrC.1<. v p OPT10,S (#r91 ~E' 'Pvr IN .LA-TE. fl..)

HIL.L.

r-,...,~,..-• .. ... t I: .. -·· ' . . ..

I -:-- 2 t&-A-VS.S 1'£At.. "f'HE t>E"T"~CTO/l.

UJo .;. loo G-All~ IJ€fr~ L~w~t. 0>11~11'& HOIJ~~

Ai>t><t~S~EZ>/.Sot.\feO

F~C.t~ITI£ s 111 CTHc/l.

ftlcT€c..'i'1~N ~V~f£ rl HA~

~o <;,ENEtl.lrL.. A''~~

?E' .. ~Olf iJC: f- T'tlff I ti Ip( 6-

To ~= //.f Pc.At£

UtTk Fl£t..1> 01'

M~V '' 1'f.£OtJ)

~E~~cT•~= EG\JtPHE~ HA~ TO &~ ~:tlct.~t;j)

HoTo-.5. 1 ~ Af'f ~ 1 PvHP.S , ...

f~~tc:~"~~l'IETIC.. 0@.JEt."n> ffA-V! TO &E

t!,., C.V T'c;L. ~ ~ot. t{oa.i<.

1 Ec.vllE;!)

'" THE ~IELJ>

- J:' EA~ t e,&. E - Act.e PTft«!>t.E

~TATS" o~ Ttc~ Ac.r '14'-~

tC lT~ ~\J(;.~TPulfl~L

e~c.11f€E~1tf 6- C.fi Al.f..£',J 5~

• TIME - tf4Et>\/LE ·1'16MT flVT' Po:.~• ~LE

~"fflOr-l~&.'{ l>E?=,.,I)~ ,..., f4.0c.11(.Ef'\El'IT foll> ~Atl'1FAc.TIJit/rfC·

~<.t<~ !1G

• c..o~-r - .$ ~l.f. I M

Current Magnet Cost Estimate

Subsystem Design Coll Forms Conductor Winding (incl tooling) Thermal radiation shields Vacuum vessels Cold mass supports Coil assembly Poles Power/protection system Cryogenics & vacuum lntatl911.-tiC>f' Management/integration

Total

Tech P.nel Mocts 11.7

7.0 7.7

12.0 2.3 8.2 7.4 6.4

11.1 5.7

11.2 2.1 1.3

$94.1M

-'/, "-- -~ - .. I ·"T ' I : .1. ...

• 15~\JG' Pt.Ji otJ 1'FtC.ic Svt rt€ t b\J€ TO Lftc..:: o~ T"Hfe .+tfl>

HopfEY l='O~ HEL.l EN&I NEER.Eb ~L\Jr10,..J

•I DEA!> eXI ST

SE flf r PO!..~

A~D-0"1 ~OLENOIJ)

• ~ ILl CO$T >f SH

V.E Ta~br 1v)-z./cr; /

Definition of GEM Muon System

Function:

• Muon identification Trac:K outside 1 O to 12 A. calorimeter (< 366 Xo if Pb)

• Muon charge assignment

• Pt trigger ( Pt > 50 GeV/c ) Segmentation: 3 cm barrel

Rates - Level 1 : Rates - Level 2:

3 mm endcaps

t 0 4 to t o5 Hz/ t 034 102 to 1 03 Hz/ 1 034

• Beam crossing tag: ('t' < 5 ns>

• Pµ. resolution: 6PJ1/PJ1 ~ 5 %

for 500 GeV /c 11 ~ O (90 degrees)

f!? z 0

~ C5 a.

OI

~ !E

-Cll

~

~I GI ..

C! ~

<

~ ~

I E 'i

'O

• 5 I E Cll

...

.c ~ en

2 I

I -~

~ ::I

,. (I)

z 0 ~

0 ~ >

E GI ~ -;; >-8 en

!!: Q

...( ....

6 ::I 2 -0

N

c 0

! ~

i ~

> ~

!

J '! s ti

()

II

C!:: I

~ \.

" :n d -\">

Physics that Muon System addresses:

Process:

H --> Zo* Zo --> 4 µ

Zo* --> 2 µ

Heavy onium states --> 2 µ (O' :::::: 1/M2 and r:::::: M5)

t r --> e+- µ -+

WW and W Zo* scattering

SUSY

Resol'n required

* *

* * *

hard to do

*

* *

* *

Good resolution: oPµ/Pµ < 5 % at 500 GeV/c

* ••

Good resolution helps Good resolution needed

*** Good resolution absolutely necessary

f ,.~~: F. D:;d"k..

• t\iQeeL ,J.p Eva.("1.a.T.f. p.f.Y"fDV-,,.,.,t:4.nC4! /reo..cfio11

o. s V\'\ 11\.o"" s~ s; f c'" rt v,, I v es .

Progress since last GEM Meeting 9/5/91:

(1) GEM Muon Group meeting 9/6/91: - Discussed technologies pros & cons - Agreed that Ahlen/Nimblett/Taylor would formulate

a recommendation of technologies to retain for LOI and R&D up to Proposal.

(2) Decision Group at CIT 9/19/91 to 9/21 /91 : - Technologies as proposed accepted.

(3) GEM Muon Group notified of technology choices 9/23/91

(4) Engineering Coordination meeting 9/26/91requested: - Develop specifications of system

o function o channel count o resolution, etc.

- Determine the mechanical specs. - Rough out services needed (HV, gas, etc.)

(5) SSCL Decision Group meeting 9/27/91 - Harden the specifications of each system for PAC

presentation 10/3/91.

(6) GEM Muon Group meeting 10/1 /91 : - Present specifications for LOI systems - Develop a coordinated R&D program

TASK: develop a muon system by summer '92 for GEM Proposal

Proposed Technologies for LOI

(a) Momentum Determination and Trigger:

Central Region: e > 300 (0 < 1\ < 1.3)

Pressurized Drift Tubes {PDT) limited Steamer Drift Tubes {LSDT)

Endcaps: 9.5o < e < 300 ( 1.3 < 1\ < 2.5)

Cathode Strip Chambers (CSC) {LSDT as backup)

(b) Beam Crossing Tag:

Central region:

Endcaps:

Resistive Plate Chambers {RPC) {Scintillators as backup)

Cathode Strip Chambers

(c) Second Coordinate Determination:

Central region:

Leve.\ 2. i"ri~.

Leve I 1.. tY";~,

Resistive Plate Chambers for PDT option(~ Jt.,iSi•>i) Limited Streamer Drift Chambers ( ~ d ;11,· s;e,,, / Sit'if>s)

Endcap region: Cathode Strip Chambers

From EOI to CIT Meeting considered:

L* Chambers Demanding technology all wires in common gas volume. Lorentz angle effects large.

LSDT made of plastic {Iarocci tubes) Mechanical design difficult to align tubes to desired accuracy.

Straw Tubes Hard to construct long tubes which can be pressurized.

All options could be made to work. Decisions based on ease of construction, operational robustness, effort to achieve resolution.

Performance/Cost

'Fe"' -B ~"' r.c.. I 'Pf'- ~ L ~, ·(. ( 2 T,. ; ~ ~ ~.,....

Pressurized Drift Tubes (Al or Fe)

Advantages:

- Used in B-fields (HRS and CDF) C. ~ o. IN\

- Can pressurize: O'X ~ 1/P1 /3

- Modular construction - Not sensitive to angle of incidence (cyl-sym)

Disadvantages:

- Second coordinate by charge division (rate limited?)

- Hard to support wire (sag must be understood) - Gas seals at high pressure must be robust

..... u::" s-1 '"' "' 3 yr ,,,. .f,, 2. ~ ")o.o

d.t.ffl"di'°'~ 0"" ~Cll.S 1 fl""CS~lot~

' ..

· S"o <.<..,_ W ;ro -e. I

.Drift Trajectories For Electron Swarm

Centroids

\

xx xx

B

F~~ P, e L E\fcA '2. + ... ;~5~"'" loQ.~.t. f

Limited Streamer Drift Tubes

Advantages:

- Fast risetime and large pulses of Limited Streamer - Second coordinate possible by orthogonal strips - Modular construction - Open profile for mass production wire stringing

Disadvantages:

- Precision resolution in B-field to be demonstrated - Rate effects of Limited Streamer mode to be

understood - Radiation hardness of Limited Streamer mode

(o.; lr<.v/c a.f 'FIVl'IL)

"' I '2. o c.. """' L . s. - /

YID 13-.f;~Jd

hilocle ~ 'i:af c ~"' s (Ci., H,0 :C~: co 2J - JI :(,CJ :'2.o

"" • !, -<:!. :.r-1' °'""" ~ .

"11 ('I

-0 1' $ -0 :r --.,,.

--h ""' ~ . _.

<"' - .. ••

J. - .., - ~

- ""' --~

() 'J

t ..)

s;, ... ~-... "' -4..1 •• • I: s Ill

V\ ., \. •• 3

I

j

~ I

- 1 t I:

'

Cathode Strip Chambers

Advantages:

- Good pattern recognition (3-d with pads) - Fast response for beam tagging - Flexible mechanical design for endcap geometry - Position resolution insensitive to gas, HV, etc. - Full functionality in one technology:

triggering, beam cross tagging, P, Z

Disadvantages:

- Channel count high (300 k for endcaps) - Precision operation in 8-field to be demonstrated - Electronics plant nontrival (1°/o channel-to-channel) - Few planes ==> sensitive to background (o-rays)

-· '_) ~"tr,· ro ~ i c it ..,.,.., ..fo l 6'0 /" "?>., (. $"!! ,.; p I.Ji J df.t / L. -~ fc

0.-.,.1, S~: I :-l'J .)

~ ..... ~ I/

5tt'iy> s E E Ill Ill ~

... ~-~

Honeycomb panel

~-------31 Strip Panel

c-g·c-r·r·r··r;r=z·r r-r·rr·r·r-r•-crr·z-····r--cc·z-c·r rcrrr=r=r:r·c·--r-r"';--r=r-• '''·' ,., r·r, r

I Cathode panel subassembly less top spacer

I Subassembly: (low precision) Cathode panels, one side - I mm Spacer bars - 2.Smm

~=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~==~~::"'~;i:;d-r•yoomb P'"°' - ZS~ Subassembly: (high precision) Strip panels, one side - I mm Spacer bars - 2.Smm Honeycomb panel - 2 Smm

-- I

, ,,, / Shielding Panel

Gas Pad Chambers S111dy. 2 C. Grinnell 09.013.91 pauc 112

,.....,

! -(/) e -6 ·::: = 'O (/)

~ 8 ·::: .... en

£

Position Resolution vs. Anode Charge for a Single Chevron Cathode

( S.4 keV X-nys, 12mm readout spacing, SO% Ar+ SO% C2He gas mixture)

1000 . . . ... : : ! ! ! ! i ! ; ! ! !

100

• I 1··

; ' ' i I 1 • ! I ! I ; ;

I • . ' ' . ' ' : ! ? . ' ••I

. •

··• '

O I I . ' ;·· . ' I ' '·1

I I : I

. ' .. i

,. ' ..,

I '"' I

! ! ! ? :

o I ! I t !

• ' ' . ' '

i ~.. I I I i . i i ' ' ' ! • I I i ! I I ' ' '

• • • .. • ••.• I I ' . l 1. ... ..1. -. . . . l ..

....... · 1· . . I . i ; · 1 · . I 1· . · I ' I I 1111 · . • .. • • . t I . •.. • •• • • . . .. .

... ··I .. I l·t ··ii··'· I i j I I ii·· ' I . I I . I . ' i I I I ... · 1 ! I · 1 ! .. ··•; . . I . I I . . . .. · ··· ··1· · ·· j i I ! · ! ·· ... · -~-J · · ' '

I ! I t ' '! 1 1· I I I ·········1 ·····1 ,. It·',., ........ , .... , ·1 · I 1·111 I 1 1 • I " I I I 1 1

I I I . t I ' . ; I I I I I ·· •• ·· · ··•· ·· · · r · 1 l · i · ··I ·1' · t · 1 t 1 ' · I i I ! I I .... I I I I I '

• I ' • I • ' I ' I I . ·········•·-·····~ .!. i.i- !.! ..... !. ; ~~ .. -11 ,,,: .

I i I i i "1 I : i . • I " I I '

: 1 i I I "t i I i ' I I " 1 ~ 1

! ' ..... ! ; :

10 0.01 0.1

"· I ' . 1

Anode Qiarge (1 psec) [pC]

i

. : I

.•. t

I

..

_ so r -n-..

Resistive Plate Chambers

Advantages:

- Fast and large pulses for beam cross tagging - High pattern recognition capability

Z-coordinate (needed for PDT option) Pµ - trigger

- Simple and inexpensive construction (glass?)

Disadvantages:

- Noise characteristics to be understood interference with other systems? how many planes needed for clean trigger?

- Rate limitations to be understood - Operation in B-field ?

. "* I I i ~1 QJ '1

.µ ~ C: I

~' 0

'-' ~

L. d Jl_

Vli

_,

:, ..

i Q - cl ~ ~ 0 'O II

~ 0 el ~

~ c ~ -' '-.a:

Q) -.,µ - .

d --Q._

--+-0

c 0 -.... .... "1 >

~ ol ~

d \.. .,,,-..

.s..~ <r

~~ f ·:Ill 4-·'-

'Q ~ ct' :::>

0 c£ v

d ., ~ t t-i -~ -~ r .. ••

" .,, Cl v • ._ 1"' \,.

~ i-:: ~ ~~ ~~ cr./~li ..:: ~ 1--.n . ·- "' ~ ' f ~~- ~£~~ VI J

-I ~ llo .... "'v ~ c. f. l~ ~ - '"" - . ~-f'I- In ,.-; ..,.. ..,, t"

~

" ~ - ~ - ~· ~ ~ . -~ ;;:r-

0 (> ::r- ()c 41"1 -x ""

~ 4

~ 4 1 ftl\ ~ ~ ~ ~ .

c l"I V"i \/) - ()c "" ~ s f1 f'\ -rJ N rJ "" ~ -~ -t__y

ii II\

.,. "· ~ ~

1:. -:f "" VI ,~ ""' ~~ ·- ~ r- -J ..,

lJ'° 0- Ln~ ~ "' N v-:;:, ........

. L ·f;.,

~ ;:_ CJ)' ~~ ~ ~' j

~ ,.. ~ r.J r-' "' \. ::r II\ .. •• ~

.. . . •• •• •• ~ ;::,- ..., N "' ¥ C)o ..,

:l"' ~ ~ - ~ .. .. .. $. .. . . "'

.. .. t)o ~ r.i

..,, ::r- ,..., .J ~ ("J

_J cf ~

.I: ·-. . "'

""'S ,. t-

a> ~ ~

L Q) s '" • ... .. .J - ..,, rC..,... ~ ., .J 0.. c .J .... ~

...._ ~ .... ~ 'lo.. -......

"' 'a .. ~ '"

v U'7 v Vl ~ \n vi ~ Q-

0... .J ~ v ·- oc . -

\ v • ~ ~ 0- "i --~ .... c.. -("( ~ -J ...J __, -D

Engineering Program:

(1) Technology non-specific:

(a) Alignment system (superlayer-to-superlayer)

(b) Support structure for superlayers

(c) System aspects: gas, power, cabling

(d) Access (scaffolding)

( e) Electronics layout - high end

~+ SSCL.. (f) Test rig to evaluate technologies

(g) Evaluate B-fields/ muon system performance

(2) Technology Specific:

(a) Large scale prototypes of PDT, LSDT, CSC, RPC

(b) Develop internal alignment system

(c) Test rig for Lorentz angle measurements

(d) Develop electronics for chamber readout, triggering, and beam cross tagging.

Cost Modd: N = 8:8:4 in barrel: N - 4;4:3 in cndcap; cndcap muoo cost = 1/2 of barrel muoo cost; muoo cost praportional to chamber area; magnet cost proportiooal

to (stored cnergyf (213): resolutioo"' S% at 90 degrees at SOO GeV

1

->C

0

CL QUAD DIODE

x--

Stability of L3 Alignment for 3 Layers of Chambers

4µm Reproduces after 1 Year

• • ••• • • •• ·- - - - -. -- -. - . .. . .. . ... . -· - - ·- -· -. - - - ··- - ·-- --. . - .

Distance = 3.0 meters

5 10 15

i----------14.5 m ___ ___,.i

UON SYSTEM ATTACHMENT POINTS ----:::-:::---........ ~ ............

Central Membrane _____.,

Webs :t:

f:;::

~j! 1:;:

IP 7.4m 9.5°

M-----10.0 m • m

!+----------------+---- 29.0 m --------___,.i

ELEVATION OF PDT MUON SYSTEM

F. Nlmblett 21 August 1991

-~----'>

r- . - . - " -"> '1 .-·------'> I

I . I . 1-·-·- ·- ·~ I

1---·-· -·>

I t------~

I t------~

• 14$k.~ ~

(I} bav~r° df';/ +- t,,.G,.e ~c-«t't

(O.. \ Pt'> T opt:o,..,

(lo) Ls or O)"f,"'o ~

(c) Hoksfo.,, f~c+or~

l~) D~""' lo-p R P< s

t~) LL lJ l.. r.c.sisfiv-< Jft4ss

~I,) MIT R Pc l~L,

• t'1) De"~fop S""pp~rt r at;.1" l'l"IA.Wf-

tr) Bf..\; le! Te.c;t la.l:, a+ c; SC L

1J 4'3o-fc.. ' 77..fc.. 4 So:./.. l Cf f ..,._

• F-.cC.. TQ.Sk o..sC..~J +t> Sr.c.4-,..;+. d.+.,,·/c d ScA,.,eclcd~ ? jolo f:s-t lo~ Ocf. IS"~

• Fof' b>ttd ~ $i.,,.111la.+io.-,, ~rc410 fo s+"J, ,J-t- s~S'I'~,,.,

Test r i<j

~-~-PDT

i----;=e=;.-------1 •~--+--- l.. S Dr

t-~==1=~---1 r---1---" ~-i--- C SC.

~:-==/==~~- Sc:. tri~~~I"" f s; +rw.cl.•

• II) -

10 1

0 • w 10 UI -UI

~ (.)

i= 101

~ n. 0 w CJ 10' a: c( x: (.)

101

®

D 10 ~ ~ ~ ~ ~ ·ro ~ ~

0 (deg,..• from burn)

·-.

C~c.. ... ~c.d p4 .. t&cl.c: Y-4+-c:

<;e_J m~,.,-Co.4; ~l'l o~ f"'I';~,~ ' f f' - ~ r~c.c.cl &wt '

\ I

I

~f'et.~S J pli\"' U, ..J.~Y"ei.c.3 ~

p Ct ff k. t" VI Y"€ C.&C) f'1; '!: ;c V;

'

EVENTS © H

0-z0 z• (m"•IT1V) z•-,..•1&-

50 60 70 80 90 100 Mp.p. (G1V)

~<.A Erl i"" <!~I or;""'~+ e ,--

C ca. l or i meter -~ ?.. . S~ mt ~+4't7t> . \)

r.e<;ol 'h

Baseline performance:

Sagitta measurement:

Barrel region (0 > 300):

S= 0.3 B bR2 I 8P µ sine

Endcap region ( 30° > e > 9.5o ):

s = 0.3 B bz2 tane/ BPµ case

Momentum resolution depends on:

Pµ, eµ

8 L2 )

)

given

wants to be large

hit resolution alignment errors multiple scattering S(.AEµ) calorimeter

fJP/P

0.15

0 .1

0.05

0

L . u 's ""'W--- ~ ".[ T

MOMENTUM -oGeV/c

GEM BASELINE -100.GeV/c

-200.GeV/c INull_F' _P _BL. T

-300.GeV/c

400.GeV/c

-soo.GeVtc

-soo.GeVtc

-100.GeV/c

-aoo.GeVtc

. I I \ \ ; ---·---·-.._! --·-

-900.GeV/c

-1000.GeV/c

I

(;.'2 V/c:.

0 20 40 60 80 100 THETA (deg.)

L .. r.<9 SI/Ms-.. ~ 11-il:T" '

RATIO OF MOMEMTUM RESOLUTION : BASELINE + VERTEX CONSTRAINT/BASELINE

( liP Ip )BASELINE+ VER; (liP Ip )BASELINE bl ratios.I

1 .2

1

0.8

0.6

0.4

0.2

0

r l ! i i THETA ~ , ~~-·-T ......... -........... --........ r-·----... ----·-r· .......... -..... -........ -.. ·r· 1 1 o 0 TN v, B

. . --. i ! ! I B 20°TNv/B t--_ :

·-----r···-·-·-····~·-1 3 0 °T N v I B ' I

' -40°TNv/B '

--'90°TNv/B ~------r-i---·"" --+--·6 0 ° TN v I B

: : : ' . -f----··--·--·~-----·-·-·-· ... ··-····--··-····-·······-····++·-·--·-·---·---·-·-··-····-·····----··-·+··-····-·-··········-·····

-f----·-----fl ______ ._L __ L___ l ____ _L

0 1000

I i I I 2000 3000 4000

P (GeV/c) 5000 6000

c

~P/P

0.15

0 .1

0.05

0

GEM BASELINE + THIN POLE + 3 EXTERNAL PLANES INull_P _P _BL+ THIN.T ~---------.

I I ' I i ' i ! i ' ' i

MOMENTUM

-oGeV/c

-100.GeV/c

-200.GeV/c

-300.GeV/c

400.GeV/c

-l-"---T1·\- .;.-------· i . J __ . I I lt.v ( c. !=i«-se I;~"- I

-soo.GeV/c

-soo.GeV/c

j j j -100.GeV/c j I I -----i-·-1 ~ ~~-r---~-· --- . 800.GeV/c

~900.GeV/c

i i

/ ~_,· i

-1000.GeV/c

,,. ' -+----\-\.·\-\-~'\:\'"'- , ... -i--·---··

' '"""-·'"--!-----·-·---·---· r

0 20 40 60 80 100 THETA (deg.)

Possible improvements to baseline resol'n:

(a) Constrain the primary vertex in trajectory fit :

For <J vertex = 100 µm:

SPµ/Pµ at 5 TeV/c improves by factor of 0.5 to 0.8.

Less improvement at lower momentum.

(b) Adding planes external to coil:

For 3 planes at .6.R = 3 m and .6.Z = 5 m:

SPµ/Pµ improves at 1 TeV/c by factor of 0.65 at goo.

Less improvement at lower momentum and angle.

(c) 8-field shaping at forward angles:

(cusp) op ti on improves SP µ/P µ by 0.5 at 1\ = 2.5

Note: Thin Pole versus Thick Pole:

.6.(SPµ/Pµ) < 20 % between options

.. \

-E

N

2.0

1 . 8

1 . 6

1 • 4

1 . 2

1 . 0

.8

.6

.4

.2 10

1

0.

GEM 1 --- Base 1 1 ne p I us Cusp

MITMRP Vl.0 9/ 3/91 22:45 Contour l • -4. 787E+02 Del ta • l. 65'lE+0l

0. 10 1 .5 1.0 1.5

R I ml CONTOURS OF CONSTANT FLUX

- 2. 0

;,\J .,, II\ ... er ·-,.. "T\ .... " -A-

V) :r p ~ .... s

l-0

(/")

' Vl <>

(/")

' Vl

""

Magnet Resolution [ntercompar1son For P = 500.0 .10.--..--.--'T--r---..~...-..--.---,---.----..--,...-T"-'--.---.--,.--..--,~...--.---.--,.--..--...--.

.08

.06

.04

.02

o Basel 1 ne A Thin-pole +Uniform Field

GEM I

D 1! = S'oo G.ev/c.

6-.-.Q. \:""' e.

• / '

Bos~line plus Cusp .06.--..--.--,.---r--r~...-..--.---..--,...---..--,...-..--.---.--,.---r--i'--r--.---.--,.--..--...--.

.04

.02

o.oo.__..__,__.__,___.=-'--..__,__.___.___..__..__..__,_.....,,,......._,___..__..._,,-'-:-_._,.......__..__..__, o.o .5 1.0 1.5 2.0 2.5

Pseudoropidity I~) !'.) Hognet Resolution for Pm 500.0 r. ~AM-StC""'

J. S~:11~

2.0

1. 6

I. 6

I. LJ

I. 2 -e

I. 0 N

.6

.6

• LJ

.2 101

7\ 0. V\ F ,:= •• c , . s... .t.

0.

'-=i ·' . f ~ ;;;;-

GEH --- Thon Pole Options: Case 3

MITMHP Vl.0 8128/91 15:21 Contour l • 0.000E+00 Delta • 5.070E+00

10 1 .s 1.0 1.5 R I ml

CONTOURS OF CONSTRNT FLUX

2.0

.v -..J'-' 0 p - ,,. ""

,,. -.. $

" GEH I --- Ba~el one v1ti-1 Ful I Pole

MITMHP Vl.0 9/ 2191 14:19 Contour l • 0.008E+80 Delta • S.eSqE+00

2.0

I. 8

I. 6

I . LJ

I. 2 -e

I. 0 N

.8

.6

• LJ

.2 10 1

0. 0.

10 1 2. .5 J.0 1.5

R I ml CONTOURS OF CONSTRNT FLUX

Ul -0 -~ x ~

"-., -

"-.,

.... 0

0 .~

..... 0 a:

Intercompartson oF 1.agnet Resolvlng Power 2.0..--....--.--r~r-..,---.-i-~r--r--r--i~-.-~-.---.~.,--,.--r~..--....--..---.~..,---,--

1. 5

1. 0

.5

o Un1Form Field I Th,n-pole 6 Thin-pole I Baseline +Uniform Field I Baseline

!

~;,,.. fe.lc. ~orse. l"C~ol 1 k 1k11."' bo,,,l:kt. b~ S 2o~

T. <5&4.U N""" 1\1\ T. T

o.o.__...._-J...___..~.__....__.__._~..___.__._~~"'-"-~-'-~~.J.--'-~---JL--...L--'--'-~..__..._ 0.0 .5 1.0 1.5 2.0 2

Integral paths Pseudorapidit~ (~)

start at Ahlen s µ-detector baseline

Summary:

Made selections of technologies for further R&D

Developing an R&D program for ultimate technology selections by summer 1992

Studying cost models of magnet/muon system

Considering (inexpensive) extensions of baseline design to improve resolution.

In the next few months: o Need to start full-scale engineering

o Need to setup machinery to evaluate muon system performance as design of detector evolves.

- Energy loss fluctuations in calorimeter - Muon system resolution versus design - Pattern recognition versus design - Trigger rates versus design

o Contribute to global integration of GEM detector

TO: FRCM: SUBJECT:

Barry Barish and Bill Willis Bob Adair and Jim Brau Calorimeter Group Consensus

-====- . ··~ v- '"--'-"-September 13, 1991

The GEM Calorimeter Group met at the SSC Laboratory September 4th and 6th to review the GEM calorimeter options. During this meeting the group developed a clear consensus on its reconmendation to the GEM Collaboration for next year's R&D plan. This consensus is summarized in the following statement:

The GEM Calorimeter Group wishes to continue R&D on two calorimeter systems during the next year. These two systems include one with a very high resolution electromagnetic section, which the group finds highly desirable, if feasible, and one which offers a conservative approach, but also with a high resolution electromagnetic section.

With this end in mind we wish to continue R&D on

/'! BaF2 E>t \.:, Scintillator Hadron Calorimetry

~ flj»;dgtft~for the barrel and LXe for the endcap

The choice of scintillator technology (liquid or spa@lfiif~ is being reviewed and will be chosen sOl!li, lib lit@ e LoI.

We also wish to pursue R&D on fs~Prd spl~lllffry and a coordinated research plan with liqul? argon atf quid scintillator options.

have

Finally we are reviewing the physics performance potentials for a ~~eRt~r to develop a consensus on a d or as possible.

argwnents and We will attempt

this subsystem as soon

This consensus developed following a thorough review of each technology in which the proponents of each were asked to answer in writing and orally the questions and concerns expressed by others in the group. These reports are contained in the GE>t Technical Report, GEM TN-91-00009.

GEM A PRECISION LEPTON-PHOTON

DETECTOR FOR THE SSC

• CALORIMETRY GOALS: DRIVEN By PHYSICS

- The Highest Resolution Calorimetry System for Leptons and Photons

- Within Budget and Schedule

- Radiation Hard

- Complementary to SDC

GEM PHYSICS GOALS LEAD To

TWO SYSTEM APPROACHES

• LOWER RISK SOLUTION EXISTS; NEEDS IDGHER EM RESOLUTION:

=> LIQUID ARGON With Fine Sampling Accordion EM

• HIGHER RISK SYSTEM, With POTENTIAL LARGE PERFORMANCE GAIN:

=> BaF2 CRYSTAL EM, With SCINTILLATOR HCAL

o NOTE: Radiation Hard Production Not Yet Achieved

- Requires One Year of R&D - Expert Review Panel

GEM TWO COMPLEMENTARY

APPROACHES

RESULTING IN THE HIGHEST FEASIBLE RESOLUTION

• LIQUID ARGON With ACCORDION EM; Liquid Krypton Option

- Intrinsic Stability =} Ease of Calibration

- Tested in Large Systems (With Plates) =} Small Systematics

- Radiation Resistant

- Uniform

• BaF2 CRYSTAL EM, With SCINTILLATOR HCAL

- Intrinsic Higher EM Resolution

- Higher HCAL Speed: =}Lower Noise in Isolation Cone

- Effective Compensation: =}Small Constant Term for Jets

With HCAL e/7r ~ 1

- More ,\ for a Given Radius

GEM CALORIMETRY

• COMPLEMENTARY STRENGTHS:

INTRINSIC RESOL'N ·< : .. LOWER RISK and SPEED TECHNOLOGY

• COMPLEMENTARY TASKS for EM: aE/E = (a/v'E E9 b)3

BaF2 + SCINT. HCAL ·< ) .. LIQUID ARGON Reduce b < 0.53 Reduce a< 73

t -+ JJ'ESIGJI a,.,,~ J°'!Nf_Ul..ATE

Q.,I' Q. J'UB )EnC'lbR Oj (;EN(_

c 0 ·-..., ca a.. ;::,

·-.... c 0 0 -! a.. ca m E ;::, ·--a Q)

:E :E w Cl

-------------

il I 8 I ~

!_U

l~ J L~J 3

in 3 Monte Carlo 14.c.1., ..

2.0

10

5

1

Data Ionization:

1':--~~-~-·- .1

. /NA3llLAr) "" .... - ' -- -- . / - 11!11' -- ... '

3 ~-' .. ISPACAL I~~ • •

ccCJfClion I """" ~ - -,~ • ,

(X,/6) ." s'.'~~I '~ ~~,.~,~·., Pb:Fibre = 4 : 1

Scintill:\tion

IJETSET] Fibre: Pb: Glue = 0.5: 0.35 : 0.15

:-..._

~'

,, ' .,

., ~·

" LXe ISPACALI Xaito.><

LKr

• \

\

'-.~\ . ' . . t''

\

LAr

1 s 10 5o loo

Ed/ E 0 , Energy Deposited in Active Medium(%)

BaF2 + CALORIMETER SYSTEM:

Scintillating Fiber {SF) or

Liquid Scintillator {LS);

Liquid Argon Study

Choice of One Scintillator HCAL By Early November

HCAL SUBSYSTEM GOALS:

• Complement the BaF 2 :

d'TJ x d</J ~ 0.08 x 0.08

=? Good Jet Resolution

=? Missing ET Resolution, (With Forward HCAL)

=? Improved Lepton ID and Measurement

• Rapid Development: Ready for GEM System Choice By Design Report

=? Beam Test By Summer 1992

• Maximize GEM's Physics Capability

BaF2 + HCAL CHOICE:

GENERAL QUESTIONS:

Answers In October

• Conceptual Design Layouts With Dimensions:

:::? LS: Module, Layer Structure, Fiber Readout

:::? SF: Module Structure, Fiber Readout

:::? LAr: Segmentation, Cryostat, Readout

:::? ALL: Mechanical Structures and Supports; Access/ Assembly /Disassembly Scheme

• HCAL Depth (A); Dead Spaces

TOTAL 11.73 >. ,

3600 MM

[400 MM'

I Tracker

Liquid Scintillator Hadron Calorimeter ( Version O.OB-1 ) Barium Fluoride EM Calorimeter

SOOOM .,

Support tube

2:::::::::::::::::,::r:>:<<:)}:f::/}::\:::::::::::::::::/:>::/<{ }.:)))})I . . .. .. . .. . . . .. ..... Electronics .. .. .. . .. .. . ....... . . . . . . . .................... ,,

-r : 5.75' -- _______________ L_ ----- ----------

' I 1--=:=:_·-----~30Q ~m .I ' I ,

Photomultipliers

~------··

TOTAL IJ.8 1'

_ .. _ ~ Structural/Support Rings

:::::::i--c:::: F BaF2 Support

Tracker

s ... o

1-4----1500 mm .. 1

~-------2300 mm---;~

14----------------5450mm .....i

G.03.SC.00038

Spaghetti Hadron Calorimeter Lead Shot Filled/ 0.10 Segmentation Barium Fluoride EM Calorimeter

3890 mm

Rcnnich

4,

1 .. ---

5260 mm FEEDTHRU

.4Laml

mm

J Total Thickness: 11 Lambda J

G.ln I .\ ll0019

FEEDTHRU

11n11111rwm1tn11t1nrntri1

11111111111111111111111111111 I ti''°; II II II llll II II II I llll lllll II II

!I

111111111111111111111111111111

GEM Liquid Argon Calorimeter

R:1ri11m Fl1111rirlr Fl\f ""dim1

.4Lambda

Incomplete Incomplete Trwompl• I• ,.

Liquid Scintillator Hadron Calorin1eter Sampling structure scheme

60 1"11"1

+

Lo.st--­cho.Mloer

142 MM

R 3600 MM

t R 1400 MM

Cleo.re.nee 108 MM

{ Support tube 60 MM

--- O.J6 A.

..

{ 20 MM Fe (wo.ll) 0.12' A.

19 lo.yers ,. Coo.rse so.Mpling

401"1M/Pb+5M/LS 4.J4 A. + 0.1 A.

40 lo.yers 4 Fine SO.l"lpling

20MM/Pb+5MM/LS 4.57 A. + 0.20 A.

{ 40riM Fe 0.24 A.

{ E-M co.loriMeter 1.8 A.

TOTAL 11.73 A.

Apb = 175 MM

A Fe = 168 MM

A Sci = 1000 MM

BaF2 + HCAL CHOICE: PHYSICS QUESTIONS

SIMULATION STUDY COMPLETED By NOVEMBER:

• Energy Resolution, Behind BaF2 for 20, 100, 500, 1000, ... Ge V Jets

- Performance For Typical, Mostly-EM, and Mostly-Hadronic Jets:

9 Reconstructed Energy Distribution

9 Missing ET Distribution

• Can Longitudinal Segmentation in the HCAL Improve the Muon Resolution ?

• Can Longitudinal Segmentation in the HCAL Improve the BaF 2 Electron and r Resol 'n ?

• fLU/1t_BEf{ Cf A~ Per:Jornia.,,ce

BaF2 + HCAL CHOICE:

ASSOCIATED EFFECTS

and ISSUES

• Systematic Effects:

=>Magnetic Field (0.8 Tesla)

=> Non-Uniformities in Cells or Towers

=> Fiber Attentuation Length, Non-Uniformity

=>Mechanical Structure, Walls, and Typical 'Dead Regions'

•Effective Compensation: Hydrogenous, '* Compensating or Overcompensating HCAL.

• Resolution as Function of e /h in EM Section, With Varying Reconstruction Algorithm.

• Transverse Segmentation Required by Physics

* GEMT tr~. l-IETC ,_p~ud.(f :

• r're f,,.,, '~ ttr(f ?:;:e.s--u,ft.!' ( ORJ(L..)

GEANT3 - JET RESOLUTION for BaF2+scint.HADRON calorimeter

here BaF2 <e/1T> = 1. 7

After optimisation for a•BaF2 + P•HC

100 GeV JETS

8 Q ;

2 1 TeV JETS

0

0.8 1 1.2 1.4 1.6

e/rr. in calorimeter behind BaF2

~ --~ -b . ~

'I.IC.

LEAKAGE FLUCTUATIONS IN CALORIMETER

for BaF2+scint.HADRON calorimeter 6 r--~~~~~~~~~~~~~~~~

4

3

2

I

7 8

t

1 TeV JETS

t t • t

Optimized

resolution 7.

' RMS(leoko9e) 7. t t

t t

9 10 11 12 .

T

Total calorimeter depth,/..., (including BaF2)

13

Thickness of Calorimeter

1. Punchthrough of 7t and K simulates µ

Ltot > 10.5 A @ 90°

2. Leakage fluctuations should not contribute

to constant term of hadronic resolution

Ltot > 9.5 A @ 90°

CAL01t1~fTE'tt G toup PcSPTICAJ

ON PttE-ftAD•A~fL

• A PlE-~llDIAT~~ ~HO~S PI0'4\SE' ~Oil. AOtlN' 10 Pf.l'f.t•c.s ,ellFoff..M.AN<E

• CJ4otC€' o~ f'l.f'-«ADIA~&. C'6cifc..SP " ('At.~«.1~P.TfC.. C#Ofe.C.

• Rec.o~.~..-AiD Mof)r\T eNe1~t:f1'e.IN f,.,

A~• ff..,, D $~ Pf'o,.T Fett. ,te.t~1>.

FAVOR.fl> ,..E?.MNtCvi~

.)f l.f(". <iAi '$T'ff. 'p .f

St&.tf.•\N D~.tlT (C,,.J) MAI.I)!.>

1. • o. f4 «.c.., Ai .tE. A 0o ~T ST~' ·~r

TMtS PoltTION Suf,OLTIO gy

0~ ~. CUJH~AN_, #4. c..c..r~ENJ

• It. ~eJ£t)# o •+ •I •

/'4, e. WOJ(k..

fl. 140c tc.f TT.. ~

1t 0 Rejection

{i "'• ~f,;ps} 90 ,

....... / 'C\

80 t;J I \

0 '\

70 \ ~ 0

\ c: q 0 60 :;::;

\ (.) Q) ·~

\ Q)

a: 50 \ \

40 \ D

300 20 40 60 80 100 120

Energy, GeV

..

' e~ ___________ ._.. .............. ._.. .............. ._.. ...... ....._. ................ _ ~

i

-~ -

J 8 -J L:::===J.--i::::::::: J ---"'!!I

0 .. tD • - ci • 0

(n Llw.qJCt.19 18J'I) (A-OOOt)dlnl ...,, L JO .-aamN (aA.&no) l\mqwqo.ad •• n• •IN o"

0 I ' 0 - - I

)

"' 0 "' 0 ,

• 0 • 0 ' "' w ;; - ~ "' - .. I

• •

' 0 • 0 • w : • "' IC IC

~ ~ i ~ \ < <

' J • J ~ 0

,.. 0 ... ...

0 0 ... ., G ~ .. - -1 A .. .. 0 0 ., .. ., .. " .. • ..

"' 0 0 CD I) .. CV 0 0 0 0 0 . 0 - • • • • • • - - - - IC ... 0 0 0 0 0 -

I A]J J J.!lllJNJ ' (AJ)IJ A9QNJ --~

0 0 - -- E -'-~-I I 0 ...

" - ... o~ -. • ... ~

8 8

! 0

I -0 • IC • • -< A ~ c' t! ..J

L c c • f ..J • 0 ..J

JC JC .. .. ... .... r • • 0 ... ... .., - - t: I i i g -. . . • > '! • ~ -11

.. ~ -.. .. N • • 0 ! 9 • "' ...

0 0 • • :It ... .. - ) 0 - - 0 0 0 0 0 < 0 0 0 0 • 0 0 0 0 IL - - - - 0 c 0 • "' ~

·-c.'l~ - I \ ' -d~

,. 0 0 ,. -""' -- -> • "' -

"" - • > • .. • 8 '-; -~ -- .., .. - .. .. ...... ! -~

Ci -ij* a c : Cf

~ ~ ..

~ 0 ., • Ill 0 ·-· .. l'I - 0 "' • • • • • Ci'" • .. .. .. • 0

t! > .. , ~

... () ~ • ca: • ., IC • ... 0 ·- 0 - =' ,,, --.. - ._ -> ' • • • • > .. -><; - 8 -" \D g • -o -CW) r: x ~

0 • 0 o>~ 0 -"~ ~ r ...

I 0•~ .,,

0 a

CD

N "1 I ... M - ID ... -0 0 < ....

" -x

Ill: ~ .. 0 • • .. ft 0 • • • ft 0 • e .. l'I 0 < • • • • • • • ... • • • • • • • • • L - - 0 • 0 0 0 .. .. .. - 0 0 0 0 0 >-I ' Cl z

...:I u I

~ I

t")

> II

" 0 0

" 0 .... c..

0 . -

~ ~

-~ ...

() t (.:::.

CD 0

CD 0

N 0

-~

~>-• Cl) •

U\

~

0 0

~ s -::; """ ()

~J 8 ;

r.r:l -\a

..J 0 I

a:: ti I

t')

> Q1

<' 0 0 -Ill 8 8 Ill <'

0 co 0

cc 0

N 0

0 0

-

-IO-l'-- ~ c:i ::s -~

~ CJ

>< Ill

IO e 0

r.:i

'° N . 0

]>'e-ratA;o.-fD.,.. wi-IA lrr.111 st,,cr.,.r • ~ '" 'X AllD Y c o."l

l"t pA~e. Si'" if; co.nee. o -f.

Hi''' r1,,,.,.1 l.'J «-

fa e-iol' 0 .f '·.., , ?. 41 •

Diode Cable '

\ I I

L J(..­

pre- ,~~~~~====~ •QtjiA,fo~,~o mm

Lead Snee

750mm

200mm I

'i I l

I "

r---------1600 mm---------i

~-------------211omm:--------~

End Views

Silicon Pt!Oro Diodes UV Reflectors

FMd Through

i 970mm

Cooling In Cooling Out

Figure 21: Side and end views of one quadrant of Sand! ele1:tromagnetic detector using LKr + 5% LXe. Sandi has a homogeneous section in the front. with a UV diode collecting scintillation light from the first 10 cm of the homogeneous noble liquid: followed by a drift diode to detect the positions of showers: and a. sampling ionization calorimeter in the ba.ck (e.g. Accordion).

40

m .sHuPe UN 1\1. tJf 6~1~

DESJGN CR /TeR./A DC"'T.? f9Cf I

f'ur<. f'Cl2. W8!?-D Ct9LQ12.1mfTa<.

• PHYS/CS:

© ,t, covceA<Tc Tc r<oJ tn I = s.o) w ITI+ R€'$Qc_uT}c1N UP "TO y 1mPaseD

l..IMlf.

® ;rEr ~esoLuT10N ~ p, l<ESOLUTldN

• RAOl8!10N Hl3RONESS:

TO IONl-'l-IN<i- R~D/A-TION N'ERR e SHawER. ll'IA-x.

AND NELJTta1rJ FL.UX.

• H IGH r:2.P.1C C RPfl8 J L I T 'I :

(FaR L l~CJIO Rtl..G<J/IJ) (0 US€ S Hoi!T StJfJPINCi- 7//Yl€S, FINO SYrJ8l<­

GIJP5. ® CALCU<..R-re flND trl€'flSU~E + :raN PtL.€UP.

" COS/ ( ft»"l 'PR.OPost=o DE'S/61\1) (D COS'T" aF TUN(;S-reN

#iok ....

Ph)aic::s Requiring a Forward Calorimeter

Missing EJ.ro

Higgs H-+ zz-+ t.+e-vv H -+ zz -+ t.+e-rr

New heavy quarks

SUSY

Technicolor P~c-+ w±zo-+ t.±vt.+e- _ Leptoquarks gg -+ PaPa -+ ln-bf

New Gauge Bosons w1::1: -+ f::l:v

Other sources of boson pairs w::1:zo-+ e±ve+1.­w::1:w::1: -+ e.z.ve±v w+w- -+ e+vR.-v if separable from tt

Forward Jets

VV scattering with forward jet tagging

Low x physics via forward di-jets

~ S:f Ol ....... \o Ol

3 ' > 'C """ N DI 'Q - t.

0 ~ ..J

~ <t: ~ <t: '3

Q

~ & t \.() £ ~

~ ~--. Q)

> 1E: ~

N I.'() -I >- .. L.

\/) Q) 'z

+-' t> Q) u E "1 L.

0)

0 ~ 0 u

~

i \/) ~ VJ \(\

~..) ~

~~ 5l " ~

,

S: (J)

\

\

·<­~· ...

I ...... >-

1..... (J)

-+-' (J)

E I.....

0 0

(.)

-· -· --- -- -,;::·-·

, , . '."

\

\

\

\

\

, ,

' ,;;>

~ \-C> \l) \.o \J

\

\

\

\

~~'l' ' ~ , .... \

.~.II 1' \

·' , /1 , , 11 \ ,, I I \ .

I

·- ·-·-- -. . -·-... ... ·-... ... ... ... ... ... . ' ... ... I ' ...

' ' . ... ''· '

... ... '

" ' ' ... .. . ... ... ,, ' ' ... ... ...

' . ' ' ... ... ',\ ' .

' ... ... ~ " '

. ' ... '\ ' ... ,, \

/ ... ' I ' ' ' t . ' ,, ,, .... ' '

€tJ'C(l.f;y /tJ PEPflt'S

3 GRN G!EO DC-pm :s } N 'FCIYC

i t oi...cx~ ~ep 5A vft'P

( -d..0 x91) ..

t.J1 ..- -TUIV6.src:N 'FC lt<­Of>TION fOR.. GBYI

Sl'f'1M81ty

• m StJ Y -B 14 sic pe;s 1 CHV PIJMM ffrfSP.,S

'1ll B!i P~lltYt 1rJGtJ BY itvl€1:;1l fnl~

1Nro Ge1n ('Fehl.. sesma·»f~ 'Rf?'>c'1~cs)

• 51'f)i>U..- D~ _., SM~ i.8uJ

tn(tt(IL18\,; c.ocz;'Ts; eruo QHWtJ'(fl... cCJUNF~

• E.x.Y'tS"cr ~ H.f31LDl\£~s aP ~ r. C fJ(I£ 79~ Wrt"H ltN't ()TlfE-IL.. _. .. f'()B'fOtt9-«..S ftJfJ!IM.., ~ f'I t:>e.

• rtJ-) c(JY'J f"fl6B1i ,.,...., m~~

c 12.111 c/:h... fo ~ H-u:; lj es-r 'l

- 'f?f-O effl)~ CCMB 1N1+e> l.,e fA%-rH

6"fflG7l. -Fc.R-<- flNJ) L..A Y' l0<1t.~.

Sl.MMING lKWID.

~MANIFOLD

SWAGE. Sfflll' DER SIGNAL ELECTRODE

STAINLESS STEEL CATHODE

GAS GAP

A880RBER ROO

_./ ABSORBER CORE BARREL SUPPORT

ENO PLUG -.._

HIGH PRESSURE IONIZATION CHAMBER

<cRoss SECTION) b n I -----------DUI__,,

LAr

l

0.8

0.6

0.4

0.2

-0.2

-0.4

•••t•q .. 1

•· .... gllfta response normalized to unity delt• response -17 2

{H(s]•, 7 .396 10 s

~~~~~ ~~~~~~-1-1

-9 4 -8 (1. + l.i 10 s) (1. + 2. 10 s)

43 59-sprghml ws-19erpr1 l'"'•'prgp' tauph• rnsl se-Jergal ; tmax•30.3 (ns] max-0.793566

~ ..

' ' i

-+' I ;

i ' I I

enctot (e nuJ

14000

.2000

10000

8000

6000

4000

2000

i

i i I I

i i I I !

i I I I

Noiee •iv-a(lleV DIS] 500..-

400

300

200

100

' ' '

I !

I i I I l I

'

' 125 ' I I -'

, I

H C"") , I

h I . ~

i i n

I ! ! I ' ' I ! I i i

i ! I ' ' ' ! ! I I I I I i I

i i I I i I I i I ! ! I i I ! I I I

' '

t

r

I .LL,l l,l i I ! j I ! j : ; I i I I I i : ! l I I I l 11~~ ! _,._ ' ' '

14000 i

6000

4000

2000

I

I I fT

~ r;-

-L----if-------+-----+----+-, td(ns] 20 40 '° 80 100 _,

+'.I 1II11111111111111111i111111111 i lloi- - ... 1 .. rt

400

300

200

100

{_

. '•'< _-.,. ---;;---t;;---?:-~--1

..

µ

~ I

' i:

" ce

i-

'' .J

''

. . . 20 40 CO It td(na] I~ 100 .. •··~-

rravr/: f Vl'Jr::-10111

STATUS OF SIMULATIONS FOR THE LOI

Simulations effort is behind schedule. We

need

• Who is doing what?

• Who is too burdened to fulfill assigned

tasks.

• Regular communication between people

doing calculations and those "in charge" of

it.

Final calculations, with write-ups, needed by

rv October 25; first LOI draft by November 4!

Subsystem Parameters:

Too little input from subsystem leaders -

especially:

• Central Tracker:

Specifications received are skimpy!

Discussion of central tracker appears

nowhere in simulations done so far.

--+Use in answer the PAC's questions 1 - 4

(Higgs, top, JtT, jets)?

--+Will the tracker work at £ ""' 1034 to

distinguish e± from 1?

• Trigger:

Question 1 (Higgs) specifically asks us to

discuss triggering startegies. What are they?

• Magnet/ Muon System:

Do simulators know all -the options they

should be considering?

• Calorimetry:

Careful H 0 --+ II background study for

LAr urgently needed.

What do we do about F /B calorimetry

{3 < T/ < 5)?

PAC Questions:

We need people to be responsible for each

of the PAC questions, to direct / oversee the

work and to guarantee delivery by f'V October

25.

• Higgs Physics - Bing Zhou

---+ Complete the analysis of H 0 ---+ II

background, especially the QCD background

for BaF2 and LAr.

---+ Are we doing ttH0 ---+ isolated leptons +

jets+ 11?

---+ Redo analysis of H 0 ---+ zo zo ---+

l! l! lt l2, t+ l-vv, t+ l- j j. F /B calorime­

try? Calorimetry for Ho---+ £+£-jj?

• Top Physics - Serban Protopopescu

--+ Calculations so far are primitive.

Should reuse programs from before.

--+Need t--+ H+b analysis.

--+ Need more help here.

• $r Physics - Frank Paige

·--+ 300 GeV Gluino - Physics backgrounds

started. Need detector backgrounds for

rJrnax = 3, 4, 5. Need same-sign dilepton

(lfl~ + X) signals and backgrounds. (Steve

Kahn)

--+ 400 GeV t' --+ w+b: Need to redo old

analyses for GEM (Vanyashin).

• Jet Energy Measurement - Ray Frey

--+ zo--+ jj (from Ho--+ zozo, H. Ma) and

Z'--+ jj (R. Frey)

io N

'O ... io

0 0 N

0 0 0

0 0 IX)

lo I~ '

0 0 ....

0 0 N

Vl ~

::i u 0 E c:

:::> I I >-CJl ~

11> C" IJ

I.JO c: Vl Vl

:::>

-Analyses are still primitive. Need better

calorimeter simulation.

• Complementarity to SDC - Ken Lane

---+ No guidance on how we are complemen­

tary to SDC, nor even what SDC is! Assume:

---+ Better EM calorimetry.

---+ More precise, "robust" muon system -

useable at C '.'.:::::'. 1034•

Tentative list of processes where we should

be better than SDC:

no (and hsusy, 1r~) ---+ 11· (Zhu; Ya­

mamoto)

ttn° ---+ isolated leptons + jets + /I.

(Zhu, Yamamoto)

n° ---+ Z Z* ---+ ti l1 lt l2. (Zhou)

=Heavy Ho ---+ zo zo ---+ µ+ µ-µ+ µ-, at 1034

'

if necessary. (Zhou)

Heavy Ho -+ zo zO -+ f + f-j j - relies on

IMt+f- - Mzl < 2 GeV. (Zhou, Ma)

Tagging b (hence t -+ w+ b) by µ± buried

in b-decay jet -+ access to flavor physics,

charged Higgses, technipions, ...

Z' -+ e+e- precision mass and width at

£, = 1034 - does EMC, tracker work?? (Lane)

Z' -+ µ+ µ- asymmetry at £ = 1034

Possibly also w 1±-+ µ±v. (Lane)

Similar studies of quark / lepton substruc­

ture in the Drell-Yan process. (Lane)

gg -+ et l~ + X. (Paige)

We wil also mention, but not calculate

such processes as PT production (leptons at

1034).

E. l<;sttw.ev ~. ft.i,c. itt D. Hal<owi.fcki

~ PRESSURE GASEOUS IONIZATION TUBES

ADVANTAGES:

• ABILITY TO HANDLE HIGH RATES

•DRIFT TIME FASTER THAN IN LIQUIDS

•SPACE CHARGE EFFECT REDUCED

• UNIFORMITY

•EASE OF CALIBRATION

• RADIATION HARD

' ,,.,,. ' . • v- ...

(" _______ _

- ....... ---

Ertel. View o~ loni,.atio11 r.&e.

c..--- ~i1n~ 1 .

+H~

f. , , , . ., ~ . ,· . •. ' . . . .

Eleett-ic•l ScJte,...t;c. o, Towe,.s

a bso-...be"' Cot-e. : Pb_, w

Ci bso .. ~ea- l--od. : Pb,, w,, Du

The sampling fraction for a tube calorimeter computed along the random

path perpendicular to the tube axis is equal to _

I • ext t diam [mm] 10 10 20 20 10 10 I .... ""

.gap fmmJ 1 2 1 2 1 2 i :c:r.- - -·- ...

•P fatmJ 50 ----· -

.absorber Pb Pb Pb Pb w w .. ·---.....---~

' - ...,._..,.-.ft''W91l'!'W .,...,. - • - --- _v ,.,_ - ... ----111 , •sensitive Volume [%] ; 24 44 13 24 24 44 I • • w: ...... --": ... ~ ... ..-.-~-"'."..,..._ _____ ...,. ___ -~-,._,.~ ... -- ... ~.---

' I

• sampl. frac. [%] i .39 .92 .18 ' .39 .25 .60 4 • • • • ·~ -

)

' ' 120 ~

'

100 '-

80 -

• 60 -

• • •

40 -•

20 .....

• •

0 0

. _ m _ r.

0.0025

. 1., I .n. . I I .... I ... I .. I

0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02

somplinq fraction

--I u • .. E u

2 •

15

14 CF4 -Ar

13 • CF4

IZ

" 10

9

8

7

6

5 t0%CF4 90%Ar

4

3

• P•IO ('0'4CH4)

z t%CF4 90%.t.r

~ 99%Ar

I Ar

0 0 0.5 lO t.5 z.o 2.5

E/PzM lwo1t1 cm·1 Torr·t1

Fla- 12$ Chriaophorou et al. (I '79) ..

-+ ICfKV/ c-. __. q.Sl(~/Clll

@ so .t .... @ so •t111.

Z0'4CF4 80"4 ....

3.0 3 5 7 9

4000 mm Begining of Magnet Area

"""'

-~·~ -~-~-=. --~~ -~~~~~~j .... ....-----------~

\\*...- - --- a:ueo:: - -151;sJt.:;l-s-J\=,

• _ ... _ ..

1 1500.000 rnm~ 1 T850.000 mm------t

1 5327 mm---------------------<

I ·J 1 000 2000 30C: 4000

SCALE IN mikneters

Charge(Number of Electrons)•lO•

"Z] -· OQ

r: ., ~

(..)

-0 .., ~ VI VI r: .., ~

,....._ Ill .... s ..._.

()I 0

-0 0

..... ()I 0

Collected Charge

D

D • > > .., ..,

(IQ Otl 0 0 ::i ::i f;ll 0 ::i ::i ~ -'< .... 0 0

"Cl "Cl

3 0 .,

\

r ABSORBER CORE

SUMMING SOARD

RIB

\~ - 500mm (19.69inJ I

HIGH PRESSURE IONIZATION CHAMBER

(END VIEW)

--- SIGNAL FEEDTHROUGH

hnl DUI

0

0

0 0

0

0 0

""' 0 0

0 0 0 0

0 _:JO 0 0

0 0 0 0 0

0 "' 0 0

0 0 :D 0

0 0 0

0 __ .,

0 -o

0 0

IA 0 0

0 0

0 0

" ' 0 0

0 0

0 0 0

"" ', ' ' 0 0 \,q 0 \,;'., ' ' 0 0

0

t~h

! i

E

u~

--=:. ==

Mlltt/JrA.Z Z .. l NTlfO t 0 ~~,,ll'llW

a..r ry../t,'141

&. C .,..,.,,,,_./IA Q

a..) e.~~-'-7

llr. IH 'ltlc.l

/A - J'oFI WOif()

Do uo 'r ~'- v•H ~ ,, .. ,,r- (11 -;11r? ~)

l#IOSr Fll-VHrs Pl/ IN I eo1,,v.,,y

( ~ l'~t;.r 1t-1J111 r)

OllA- FT-.! 'tO rsc.. JN

P~o.s [w Olf () . ,l.Jl,lt() Co PY rr'X ( VAHJ/,tA J=/,Al/0,1(')

AF-T,.l'f 1'Yl'G-Sc'r'r1N IJ; Sdlfilo GtJ1 l'INO-~ 'TH6"N ~£G-6"~J.J'4) ( 1tr1= t1 11.re~.r J

tlt"rd "° SI N&.1-C ,-dlh 7" ~ c~~,.,,.c,r ~OA c_.+C ~ .r<r-c.n ON

1t1,e, ~"'lllrNrs_, C'1/ltr(}rrJ 10 'hlu Pnf SO~, wfJO Ul//,t, /:O~~AA't)

co ""rcrro t ,.~~AO vrtJ 6'.017:.t

T<> S'S<. VIA- f'#IAJPA- r-1-v~ A-f~

O/t C l-'741f 6•/fllf.li,_ Olt' ~NON••

KOf/ '( - O-o o I) /)~IJ.P.r- NJ .s~ c:..

Nov ti - lJAelt to ~Nl'A-ti. r 'rot11J.r ~~ilf /:I NIJt, l'ft-Y/11 ON...t

N(JV ft- /CIN/Jt,. /;Jlff/J~'/'.J N .rsc.

f?ftlJAY .N'OVZ.1. - TO ~lflNTE;i'f I

l(O V JD - to PA-C-

Nora ro"4,. tJ1tA,er..l 9J~1,1r~ 1'o r;,rr- Sn.~ TI ~

ci)l~J~S ~ S'Sc,: 4A~IJ'N l'IA/VX ~ /

.f If'#. N IJ l>tf J"' Yo Jr-

+ A 18A1111 o~ PA'o 0~ /f'PAO PrJ'

&- ""''' 76~?- 1"0 r"Se VX I:.' IJV~l.J~A'

~)( Pc21HCl.J T

( /.J~1' Sw& Svs-r.r'MC)

- Z'r>CAJr ,~.., S-.>1t S'vJ r4"M .TAJ rtrl!tltc ,.10,.J1

- ';£.,-aAr~ fN.,~1elfc./Cosr ie~Al•-""'''

- s~v.Svs.,r11 SPaCC' ..,.. $~1&&11eer Pcvaer> Co.I:-~ F1.,1J1~ Ar:, ...... , ...... s .. r .. 1-.,i ••••••

- r,.,, .,.~ .. "c.,.,."'' "".or"' ~ s c. - tle.,__,. P:r.11 CJt.J,.l.1~ Sc.( ~1.,1~

_......,.,. -r&c11M1c.tlt1,, eet-oA.r s,,,, ,,.ell-I ~,.ec.

CNA N• c c 0"" .,.A'"'

Now:

z) Ace •ss (>l...'lo$•r~, , .. ,.. ... ,.. ,,,.,,.~,.. .,.,. ... ,,C', ?

~ ,, ~ .. ,,.,.t'''' ••---ea ,.,., ,,_. •' e: I- '1

(OS f. "" f ~1 k E~t..· c.1..,"' c.7

.l) C., lo,.; ..,..,J.,,. 7';c,(,. • '•' y 2. :r"'.ter&-\cl.a-\- c:> ... :,._, ~ Sr• •'1 g.,c.l:"' Vc>lu ... .-.1 ?

1..,.. • D~'-"iA'f Uc.--;. - '."o\'1:

GEH \2.t b - '?o:>~i..\ol.42.. S.Q..qi...~ut.. ~ E.u~u+s.

1- . .Se..~1:. lr" 1qq1 J,.u..e.. ~O....t<4. -to~ FY 1~1-:Pn>,Y'lS~ ~Ork

.D u.JL ~o J s ~ FY q Z.. R..& !:> 'P"'>f cs. o...9.. ~ ~.,. \a.-~~.

~Q..kc..~M. ~Q...\ ~~ Q...~ Lt\.(,, ~t ~<tD ~~~t °?"'12..f ~J..... II ..... Tue.. GE.H. C..Olla..loorQ...tiol.A.. S~oul~ Sl..)°b1Mi.t

o... ~ ;_ v-. ~ l ~ c... o \.\ ~v- .Q..V\-t 'K a!:> " 'f'"'D f o .s. a.. \ -...;

b ~ ~· • <:l a... l O..!j.e... "l .:l. ""-'- cA. 0.. t Q....

a."\ G:. E. H 4--o ~ a_ k Q.. !. 12 c..i.... !?. i.. o v.. ~ \A 0-v-r o w ~~

ao VJ\/\ ~".JI.. 4- 2.~ \A u.o\.D~ ~Q...~ ~ b.Q.. S '-l..f f o v-~ol. {o,- .ILQ...c..k. Sub ~'1 s~ ... +o c... ~ \,'j Od- ~ ,4

b) f>AC... -to lV..oyQ..{-u.ll'jJ blQ..S~ ~ Gt.M

J-. Q. c...~ ti.. 0 u. s 0 \.\ 0 cJ. 5 I 4 \A.lCLQ_,, i: l \.\. % C.) GE \.-\ Sub S 'i ~ t.Q..u.c.. S ~o 3 Q.. \AC2.v-Q...'"t L p la.."'­

to v- '{: 1' IL R.. U. ~ :_.I.\ .Q..Q.. V' ~ "" ~ ()..IA.~ e_ • 'b

~.ll...~A}.Q..A,. 1:0 ~Uf~Ori -{-;'-'.JL

t fl.~~ l.l..'O Lo ~ ~s ~ ~ lA.o t c.. .Q_

d) G, E M. M Q. "'Q. ~ ll... \M.L Vl."t -t 0 p YO \) «...&. Q...

~ u \::> s ':i s:t e.. \M. ~ l>.l i.. ~ ~ u.i.4 o l ~u.L. ._. tc v-

~ u. ~"".A.. a.Na-! ~.Q. ~ r 1:> ~I.A. & ~ 0...\1 ().-'.. ~ o.lo\..t. -t <:> ILO cL. S u I., £ '"{ s ku-.

Q...') .subs':! s-t~\MS -to SR.. c.:t

0

\. o v... o ~ *:t..D.... w v ~ t .s:i- t. ""Q..;,.,. ..,,.. e a. D ? ll"o \> t> s. a.J-

ll kot~vQi:.\.ou... o .. ~ ;..wpo.,-to1u12. o-t. work.

LL) \ Q.. C.. ~ ~<:.... Q.Q... .D Q.Sc..,-~t l 0 1.4...

.Li.i.) T ;_ w. L 1- o...lo l ~

'ui) ~ucl. ~ Q...{

+) b E. ~ 'Q. <tj) Co \M w. '1. ~D....Q... "t-o ~SS ~u...\o\Q... •

p-.royos~ O....U..~ ~01ou.U..+ 4-e t.\i\.G-

S ~ C... \...;Q.. \:> .•

~. ~JL ssc_ ~ti "D ?G..M.~l C.."tvi.-:1 \U~U.~o...u...~ ue&.l)

\>.I~ U IS£.. v ~~IV ~e_ ~ 'l"O \;) ol oJt. -tci v-

t e.,.cl4.,11 i r a~ CJ:>V'f'C2..~.:t \AL~~ ~ ..... c:Q.. IA.of A.~

'(" 2.... t.o ""'- \Mo~ "'-~ °'- \> v Y" 0 \.) c:UL

4 .. Dv~ \ n.. \> ~ o...""cl. ~ oSS i.)o\ D.... C...C \~ a...\o o..,. o._ i: ·t. ou...

\» i.. ~ S> ~ c_. D \.A.. C.0 ~ 11-L o ""- ~ ~ "t>

pvt>~ \.~ .. w...S. -t-o u l...Uor \ic....Q..~ o u_ t

-~ . 6 E H Su lo s ~ s-t C2..1M s s. \.....o u..l cQ.. ~ C2.. "'Q,I(" o.:t CL. a...

~o-rCL... ~'2....-t~lA.~ ~lo.."'- ~\'"" ~ e..~c

a.; :;:: V\.&i.~-\:u-\;\01A.S ~\AVoh.>ct.~ , ll..)~.:~~

{\.t,Q.. .S.c..~2..M --t ~ ~-\..~ G .. ~- Q...u.. ~u.~

\A. Q.. U4.JL ~ I S. ~ Q.. ~ ,i. 'j ';_. ..._ ~ f-vo..c... i; ~ t) t..-

o J {\..~Q_ Sf '2Mt o'- ~. \.oov-lc..

;:; ~ ::i c...-:. 0.....:...1. .Q. J.. V-0 l ~ 0-1.A. ol v- e. s ~ cu.~ ;__ ~ ~ '· ':_, +'j eJ Q..Q...c.t..... \.. u. !. i: i.. ~ut ~ ou...

c\ T \.1M12..-t o...lo\L -to..- \.J..>or'IL c...t 12,_0 cL_

~ \.t t"'t ~ ~ u-t i. o u-

J. J ~ U ~ ~ C2... t a.t J2...0.. d.._ 'i_. V\ !"'t \. "\-u_-\; ~ f) "'- I

.S~Q.~~~i S\lt>V o.--t ~~ O-\l ~\:>uvc...e..~

• G, E.'""' ~ t b {-uv..cl. s a T t-J ~ \..<'- ~"" ci.1

a 0 e Q.tr~ -t ~ v...~ ~v-.. t OJ•~ \M.~ poW.Qy-.

a.t -&u ';,.u.~~~~~ • 0 ~Jl..lr' 7

b · ~ Q..SQ.. ~ o ""'- -\:-kR... O....\c o \J L J.. IL -t a,;... \ lL ~ ~ l Q..l.(... l

~ 0 u l ~ t 0 't> Q_ l.U v\.,;t\:.12..""- 'o R... t \J.) Q.. Q..~ ~o.. c:L...

l. IA. s.~ k ~:. E> ...... I st.~ I ~.R.. ~ S!. e.... L-o....1.o .

"::f. H Q..W. b.a.v-~ oJ t °k.tL ~ 'E.. \--'. C....o \\ CL\o Ov- c...i,~ &'--

'M O..j wl...s\.... to s~b'M~t to ~~ SSC....

Lo...b ? v-o? o s a..\ .s. "to ~ w.. ~ \o . ."t<L. 'K. tJ::> wo.--\£- O'-\ i:C2.c.L.. u..olo<J ~Q..S V\ot- SQ..lO.c..."t'2-~

"t-c lo~ Su'?~ ov-ta....~ b ~ GE~ . "tt....A..tsL

p -ro f -o .S Q..\ .s. S. ~ t> v.. l &. lo~ Ill Q.. ~ o --l:.i.. Q. t ~c::A...

\.}.) ~ 41.>-. '-tk-'- ~ ~ c:.. L a_ le ~ I.A 0:- '-- p J;... ~ du,.1,.;,, +-L j

o~ th.e... a..bovlL +v-o...v.......Q.... work. ~v-G ~ "-.\. t::. t !::> . 1"'-e.se_ ~ vc vo~tl s ct...vlL

s~\l. &,i.a ~t \ s- 1•

~~<3~~.lZ.~3. u......._~ '2.~ D '{\ o....v.. _,

GE\.-< S\.)bs~s+0-1,.u..s ...\-o qQ..\.1.~o~e '?\o.."'­

tor Ev..~~. u.~~ ...... ~ Q .. J.. E. ~ D ~12..rl..4'1. Q..ck ~

S U f~o II'{ .tJ!, • + e.. c.k.. \.t..o lo ~ ~a..S ~J e..lLo ;_, c..R....

2., . r v.. c. l 14~ JL E ~ ~ ~\.t 4 ~\.L.f ~u..'-. e. ~ b

~v- fto ct.. Su lo s'1 ~ ~\M..

3 , A {-Q.M.:> (' Q. ~ .Q..S p Q..r S \,) \, S'-{ S k.u•

G..) At fJU....> 'PO... VO.., rfl.fJ~ > ~ S. ~ \,';.. ..... ~

1...o o~ k., w~ ~.Q...c Q..~ <1-r-"j o..k

• A.v~ \ CA..'o\.Q.. +.cu.... o~\\.- SoU-1rU2..S

• R..~~s.~ ~lM.. GEH ~c.....cQ.1

..::\. C::.'2...+ 'Pl~ -l-o 'g,4J) CoUA.~ijqo

b':S_ Oc...-l:o~~ \4, 1qq I

~o· C. B0-l-'~ 1 ?~~~~. Yo..lA. L)~ • t=' O.....'IC (. ~o ~ ') 4 ~ 7 - 6 \ 2. <

S u b S '1._ S .la.. \&A.. S -l.-o tor~ ~t a..!e.._ ~ Y ~ 2..

E. \.l. ~'2.Q... n.u.. ~ °'-""- &. \2 t. "'!) ~ l ~ ._

~-'"" (. \: (l.yl Q !J l vef, t-JJUJ.) w..a......

Q. . ~ \.t. ""'-

C.6.

4-o wo.,,J( <aor~ou.­

? () •· \ ~o<l<o -tt-"