Generalization of Delaunay Meshes for the Error Control in Numerical Simulations

Post on 01-Jun-2015

1,484 views 4 download

Tags:

description

Perspectives de l'adaptation de maillages dans la pratique de l'ingénieurJulien Dompierre, juin 2003Les sciences de l'ingénieur utilisent traditionnellement deux approchescomplémentaires pour appréhender le monde: l'analyse théorique et l'étudeexpérimentale. Depuis l'avènement des ordinateurs, la simulation numériquereprésente une possible troisième voie. Elle permet d'analyser des systèmesplus complexes que l'analyse théorique et d'étudier des systèmesinaccessibles à l'étude expérimentale. Cependant, la simulation numériqueétant récente, le recul manque pour évaluer la qualité des résultats. Parailleurs, le principal coût des simulations numériques est le temps quepasse l'ingénieur à construire le modèle géométrique avec un système de CAO,à construire un maillage avec un mailleur, à analyser la solution et àrétroagir jusqu'à obtenir une solution satisfaisante. La confiance dans lesrésultats et le coût humain sont deux obstacles majeurs à une plus grandepénétration de la simulation numérique dans la pratique de l'ingénieur.La recherche que je mène depuis une dizaine d'années porte sur la générationet l'adaptation de maillages. Elle vise à accroître la fiabilité et àréduire le coût des simulations numériques en en augmentantl'automatisation. L'automatisation consiste à développer des algorithmesnumériques fiables et robustes qui réduisent les interventions de l'usager.Grâce à ces recherches sur de nouvelles méthodes numériques, le processus desimulation numérique deviendra plus fiable et devrait aboutir à une réponseindépendante de l'utilisateur et des outils de modélisation utilisés.Adaptation de maillagesLa recherche en adaptation de maillages recouvre trois sujetscomplémentaires: l'estimation d'erreur, les techniques de maillage et lesméthodes de couplage avec le résoluteur. Ce sont aussi les trois axes derecherche que je compte mener: améliorer et étendre les estimateursd'erreurs, rendre le mailleur tridimensionnel plus robuste et rapide, etdiversifier les applications de simulation numérique.J'ai développé une approche qui consiste à découpler l'estimation del'erreur des techniques de maillages par l'introduction d'une carte detaille, isotrope ou anisotrope, qui transmet les spécifications del'estimateur d'erreur vers l'adapteur de maillages. Le logiciel OORT(Object-Oriented Remeshing Toolkit) est basé sur cette approche.L'adapteur de maillages construit un maillage qui satisfait auxspécifications de la carte de taille. Il procède en modifiant de manièreitérative un maillage initial par un algorithme d'optimisation. Cetalgorithme optimise simultanément des variables discrètes (le nombre desommets et la connectivité entre les sommets) et des variables continues(les coordonnées des sommets). Il converge vers un minimum et peut êtrerendu plus efficace en accélérant la convergence. La construction d'unmaillage tétraédrique anisotrope est à la pointe de la recherche.Intégration de la technologieLa génération et l'adaptation de maillages est une discipline en soi,cependant, nous avons toujours voulu qu'elle soit applicable et intégréedans un processus de simulation numérique. Un volet important de larecherche concerne donc l'intégration de la génération de maillages avec unmodèle issu de la CAO, et le couplage de l'adaptation de maillages avec desrésoluteurs éléments finis ou volumes finis. Cette recherche trouve sonsens dans les collaborations avec des équipes de génie qui développent ouutilisent un processus de simulation numérique.Au cours des cinq dernières années, des collaborations ont été mises enoeuvre, tant avec des universitaires qu'avec des industriels. Enparticulier, je collabore actuellement avec Général Électrique du Canadapour coupler OORT avec CFX-5 et avec Steven Dufour, du Département demathématiques et de génie industr

transcript

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Generalization of Delaunay Meshesfor the Error Control

in Numerical Simulations

Julien Dompierre

Department of Mathematics and Computer ScienceLaurentian University

Sudbury, October 2, 2009

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 1

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

General Framework

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 2

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

General Framework

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 3

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

General Framework

General Framework of Numerical Simulation

Mesh Generator

Solution

CAD System

Mesh

Solver

Adaptor

CAD Model

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 4

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

General Framework

General Framework with Feedback

Mesh Generator

Solution

CAD System

Mesh

Solver

Adaptor

CAD Model

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 5

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

General Framework

Mesh Adaptation Loop

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 6

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 7

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Lesson on Voronoi Diagram

The Voronoi diagrams are partitions of space based on thenotion of distance.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 8

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Voronoi Diagram

Georgy Fedoseevich Voronoı. April 28,1868, Ukraine – November 20, 1908,Warsaw. Nouvelles applications desparametres continus a la theorie desformes quadratiques. Recherches sur lesparallelloedes primitifs. Journal ReineAngew. Math, Vol 134, 1908.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 9

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Perpendicular Bisector

S1

S2

d(P, S2)

d(P, S1)

M

P

Let S1 and S2 be two ver-tices in IR

2. The perpendi-cular bisector M(S1, S2) is thelocus of points equidistant toS1 and S2. M(S1, S2) =P ∈ IR

2 | d(P, S1) = d(P, S2),where d(·, ·) is the Euclideandistance between two points ofspace.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 10

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

A Set of Vertices

Let S = Sii=1,...,N be a set of N vertices.

S6

S11S2S10

S4

S3S12S7

S9

S8

S5

S1

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 11

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Voronoi Cell

Definition: The Voronoi cell C(Si ) associated to the vertex Si isthe locus of points of space which are closer to Si than any othervertex:

C(Si ) = P ∈ IR2 | d(P, Si ) ≤ d(P, Sj),∀j 6= i.

Si

C(Si )

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 12

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Voronoi Diagram

The set of Voronoi cells associated with all the vertices of the setof vertices is called the Voronoi diagram.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 13

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Properties of the Voronoi Diagram

The Voronoi cells are polygons in 2D, polyhedra in 3D andn-polytopes in nD.

The Voronoi cells are convex.

The Voronoi cells cover space without overlapping.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 14

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

What to Retain

The Voronoi diagrams are partitions of space into cells basedon the notion of distance.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 15

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Lesson on Delaunay Triangulation

A Delaunay triangulation of a set of vertices is atriangulation also based on the notion of distance.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 16

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Delaunay Triangulation

Boris Nikolaevich Delone or Delau-

nay. 15 mars 1890, Saint Petersbourg— 1980. Sur la sphere vide. A lamemoire de Georges Voronoi, Bulletin ofthe Academy of Sciences of the USSR,Vol. 7, pp. 793–800, 1934.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 17

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

A Set of Vertices

S6

S11S2S10

S4

S3S12S7

S9

S8

S5

S1

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 18

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Triangulation of a Set of Vertices

The same set of vertices can be triangulated in many differentfashions.

. . .

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 19

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Triangulation of a Set of Vertices

. . .

. . .

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 20

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Triangulation of a Set of Vertices

. . .

. . .

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 21

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Delaunay Triangulation

Among all these fashions, there is one (or maybe many)triangulation of the convex hull of the set of vertices that is said tobe a Delaunay triangulation.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 22

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Empty Sphere Criterion of Delaunay

Empty sphere criterion: A simplex K satisfies the empty spherecriterion if the open circumscribed ball of the simplex K is empty(ie, does not contain any other vertex of the triangulation).

K

K

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 23

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Violation of the Empty Sphere Criterion

A simplex K does not satisfy the empty sphere criterion if theopened circumscribed ball of simplex K is not empty (ie, itcontains at least one vertex of the triangulation).

K

K

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 24

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Delaunay Triangulation

Delaunay Triangulation: If all the simplices K of a triangulationT satisfy the empty sphere criterion, then the triangulation is saidto be a Delaunay triangulation.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 25

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Delaunay Algorithm

The circumscribedsphere of a simplex hasto be computed.

This amounts tocomputing the center ofa simplex.

The center is the pointat equal distance to allthe vertices of thesimplex.

S2

S1

S3

C

ρout

P

d

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 26

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Delaunay Algorithm

How can we know if apoint P violates theempty sphere criterionfor a simplex K?

The distance dbetween the point Pand the center C has tobe computed.

If the distance d isgreater than the radiusρ, the point P is not inthe circumscribedsphere of the simplexK .

S2

S1

S3

C

ρout

P

d

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 27

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Duality Delaunay-Voronoı

The Voronoı diagram is the dual of the Delaunay triangulation andvice versa.

Delaunay triangulations have many regularity properties.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 28

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

What to Retain

The Voronoi diagram of a set of vertices is a partition ofspace into cells based on the notion of distance.

A Delaunay triangulation of a set of vertices is atriangulation also based on the notion of distance.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 29

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 30

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Voronoı and Delaunay in Nature

Voronoı diagrams and Delaunay triangulations are not just amathematician’s whim, they represent structures that can be foundin nature.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 31

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Giraffe Hair Coat

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 32

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

A Turtle

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 33

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

A Pineapple

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 34

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Devil’s Tower

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 35

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Dry Mud

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 36

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Bee Cells

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 37

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Dragonfly Wings

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 38

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Fly Eyes

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 39

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Pop Corn

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 40

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Carbon Nanotubes

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 41

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Soap Bubbles

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 42

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

A Geodesic Dome

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 43

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Biosphere de Montreal

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 44

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Streets of Paris

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 45

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Roads in France

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 46

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Roads in France

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 47

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 48

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Key Point of this Lecture

For a given set of vertices, the Voronoı diagram and theDelaunay triangulation are partitions of space based on thenotion of distance.

The notion of distance can be generalized.

And so, the notions of Voronoı diagram and Delaunaytriangulation can be generalized.

J. Dompierre, M.-G. Vallet, P. Labbe and F. Guibault. “An Analysis of Simplex

Shape Measures for Anisotropic Meshes”. Computer Methods in Applied

Mechanics and Engineering. vol. 194, p. 4895–4914, 2005

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 49

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Key Point of this Lecture

For a given set of vertices, the Voronoı diagram and theDelaunay triangulation are partitions of space based on thenotion of distance.

The notion of distance can be generalized.

And so, the notions of Voronoı diagram and Delaunaytriangulation can be generalized.

J. Dompierre, M.-G. Vallet, P. Labbe and F. Guibault. “An Analysis of Simplex

Shape Measures for Anisotropic Meshes”. Computer Methods in Applied

Mechanics and Engineering. vol. 194, p. 4895–4914, 2005

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 49

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Key Point of this Lecture

For a given set of vertices, the Voronoı diagram and theDelaunay triangulation are partitions of space based on thenotion of distance.

The notion of distance can be generalized.

And so, the notions of Voronoı diagram and Delaunaytriangulation can be generalized.

J. Dompierre, M.-G. Vallet, P. Labbe and F. Guibault. “An Analysis of Simplex

Shape Measures for Anisotropic Meshes”. Computer Methods in Applied

Mechanics and Engineering. vol. 194, p. 4895–4914, 2005

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 49

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Nikolai Ivanovich Lobachevsky

Nikolai Ivanovich

LOBACHEVSKY, 1 decembre1792, Nizhny Novgorod — 24fevrier 1856, Kazan.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 50

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Janos Bolyai

Janos BOLYAI, 15 decembre 1802a Kolozsvar, Empire Austrichien(Cluj, Roumanie) — 27 janvier 1860a Marosvasarhely, Empire Austrichien(Tirgu-Mures, Roumanie).

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 51

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Bernhard RIEMANN

Georg Friedrich Bernhard RIE-

MANN, 7 septembre 1826, Hanovre— 20 juillet 1866, Selasca. Uber dieHypothesen welche der Geometrie zuGrunde liegen. 10 juin 1854.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 52

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Non Euclidean Geometry

Riemann has generalized Euclidean geometry in the plane toRiemannian geometry on a surface.

He has defined the distance between two points on a surface as thelength of the shortest path between these two points (geodesic).

He has introduced the Riemannian metric that defines thecurvature of space.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 53

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Definition of a Metric

If S is any set, then the function

d : S×S → IR

is called a metric on S if it satisfies

(i) d(A, B) ≥ 0 for all A, B in S ;

(ii) d(A, B) = 0 if and only if A = B;

(iii) d(A, B) = d(B, A) for all A, B in S ;

(iv) d(A, B) ≤ d(A, C ) + d(C , B) for all A, B, C in S .

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 54

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Euclidean Distance is a Metric

In the previous definition of a metric, let the set S be IR2, the

function

d : IR2×IR

2 → IR(

xA

yA

)

×

(

xB

yB

)

→√

(xB − xA)2 + (yB − yA)2

is a metric on IR2.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 55

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Scalar Product is a Metric

Let a vectorial space with its scalar product 〈·, ·〉. Then the normof the scalar product of the difference of two elements of thevectorial space is a metric.

d(A, B) = ‖B − A‖,

= 〈B − A, B − A〉1/2,

= 〈−→AB,

−→AB〉1/2,

=

−→ABT

−→AB.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 56

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

The Scalar Product is a Metric

If the vectorial space is IR2, then the norm of the scalar product of

the vector−→AB is the Euclidean distance.

d(A, B) = 〈B − A, B − A〉1/2 =

−→ABT

−→AB,

=

(

xB − xA

yB − yA

)T (

xB − xA

yB − yA

)

,

=√

(xB − xA)2 + (yB − yA)2.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 57

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Metric Tensor

A metric tensor M is a symmetric positive definite matrix

M =

(

m11 m12

m12 m22

)

in 2D,

M =

m11 m12 m13

m12 m22 m23

m13 m23 m33

in 3D.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 58

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Metric Length

The length LM(−→AB) of an edge between vertices A and B in the

metric M is given by

LM(−→AB) = 〈

−→AB ,

−→AB〉

1/2M

,

= 〈−→AB ,M

−→AB〉1/2,

=

−→ABTM

−→AB.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 59

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Euclidean Length with M = I

LM(−→AB) = 〈

−→AB,M

−→AB〉1/2 =

−→ABTM

−→AB,

=

(

xB − xA

yB − yA

)T (

1 00 1

) (

xB − xA

yB − yA

)

,

LE (−→AB) =

(xB − xA)2 + (yB − yA)2.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 60

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Metric Length with M =(

αβ

βγ

)

LM(−→AB) = 〈

−→AB,M

−→AB〉1/2 =

−→ABTM

−→AB,

=

(

xB − xA

yB − yA

)T (

α ββ γ

) (

xB − xA

yB − yA

)

,

LM(−→AB) =

(

α(xB − xA)2 + 2β(xB − xA)(yB − yA)

+γ(yB − yA)2)1/2

.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 61

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Length in a Variable Metric

In the general sense, the metric tensor M is not constant butvaries continuously for every point of space. The length of aparameterized curve γ(t) = (x(t), y(t), z(t)) , t ∈ [0, 1] isevaluated in the metric

LM(γ) =

∫ 1

0

(γ′(t))T M (γ(t)) γ′(t) dt,

where γ(t) is a point of the curve and γ′(t) is the tangent vectorof the curve at that point. LM(γ) is always bigger or equal to thegeodesic between the end points of the curve.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 62

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Area and Volume in a Metric

Area of the triangle K in a metric M:

AM(K ) =

K

det(M) dA.

Volume of the tetrahedron K in a metric M:

VM(K ) =

K

det(M) dV .

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 63

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Example of a Metric Tensor Field

This analytical test case is defined in George and Borouchaki

(1997).

The domain is a [0, 7] × [0, 9] rectangle.

This test case has an anisotropic Riemannian metric defined by :

M =

(

h−21 (x , y) 0

0 h−22 (x , y)

)

, . . .

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 64

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Example of a Metric Tensor Field

. . . where h1(x , y) is given by:

h1(x , y) =

1 − 19x/40 if x ∈ [0, 2],

20(2x−7)/3 if x ∈ ]2, 3.5],

5(7−2x)/3 if x ∈ ]3.5, 5],

15 + 4

5

(

x−52

)4if x ∈ ]5, 7], . . .

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 65

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Example of a Metric Tensor Field

. . . and h2(x , y) is given by:

h2(x , y) =

1 − 19y/40 if y ∈ [0, 2],

20(2y−9)/5 if y ∈ ]2, 4.5],

5(9−2y)/5 if y ∈ ]4.5, 7],

15 + 4

5

(

y−72

)4if y ∈ ]7, 9].

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 66

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Metric and Delaunay Mesh

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 67

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

What to Retain

What appears to everybody to be a skewed trianglecould be an equilateral triangle in the correspondingskewed space.

An adpated mesh is a only a regular uniform (probablyDelaunay) mesh in a skewed space.

Question 1: From where the Riemannian metric tensorcome from?

Question 2: How to build a regular uniform mesh in askewed space?

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 68

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 69

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Lesson on Mesh Adaptation

Mesh adaptation is an optimisation problem.

The optimal mesh usually does not exist.

Our algorithm is a metaheuristic closed to simulatedannealing that converges iteratively towards a better mesh.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 70

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Le critere de Delaunay n’est pas un generateur de maillage

Le critere de Delaunay permet de relier des sommets pour formerune triangulation.

Le critere de Delaunay peut “assez facilement” se generaliser a unemetrique riemannienne.

Mais, le critere n’indique pas combien de sommets il faut genererni ou il faut les generer.

Associer un generateur de sommets a un algorithme de Delaunayest une approche constructive de la generation de maillage(approche gloutonne, sans retour arriere).

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 71

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Maillage unitaire

Un maillage de Delaunay dans la metrique n’est pasnecessairement de la bonne taille.

On veut plus qu’un maillage de Delaunay dans la metrique, on enveut un de la bonne taille, ie, dont les aretes ont une longueurunitaire avec la metrique riemannienne.

On ne peut pas y arriver de facon directe, mais par desmodifications successives.

Dans la boucle d’adaptation, pour que ca marche bien, le solveurdoit converger, le mailleur doit converger, et la boucle completesolveur-mailleur doit converger.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 72

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

La generation d’un maillage unitaire est un problemed’optimisation

Les degres de liberte sont le nombre et la position des sommets,ainsi que la connectivite entre eux.

Le probleme a une partie continue (la position des sommets) etune partie combinatoire (le nombre de sommets et la connectivite).On considere que c’est probablement un probleme NP-Complet.

On approche le maillage optimal avec une metaheuristique quis’apparente a du recuit-simule qui explore l’espace des maillagespossibles.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 73

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Methode des voisinages

Soit M l’ensemble des maillages conformes et simpliciaux quidiscretisent un domaine. On veut construire une suite de maillagesmi ∈ M telle que mi+1 est un maillage dans le voisinage de mi ettelle que la suite converge vers un maillage optimal.

Un maillage mi+1 est voisin du maillage mi si mi+1 peut-etreobtenu de mi a l’aide d’une transformation elementaire et locale.

Les operateurs de voisinage sont l’ajout ou la suppression d’unsommet, la reconnection entre les sommets avec le retournementd’un arete ou d’une face triangulaire, ou encore le deplacementd’un sommet.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 74

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Ajout d’un sommet

Le raffinement consiste a ajouter un sommet au milieu d’une aretetrop longue et a couper en deux les faces et les tetraedresadjacents.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 75

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Omission d’un sommet

Le maillage peut etre deraffine en enlevant les aretes trop courtes.Les elements autour de l’arete sont detruits et les deux sommets del’arete ne font plus qu’un.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 76

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Retournement de faces

Chaque face interne est entouree de deux tetraedres. Cette facepeut etre retournee en une arete entouree de trois tetraedres.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 77

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Retournement d’aretes

BA A

B

2

S3S3

S

S1S1

S2

S

5

4 S4

S5S

Une arete AB entouree de n tetraedres peut etre retournee en n− 2triangles qui donnent 2(n − 2) tetraedres avec les sommets A et B.Quand n augmente, le nombre de configurations retourneesaugmente exponentiellement.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 78

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Deplacement d’un sommet

x1

x5

x2

x3x4

x6

k1

k2

k3k4

k5

k6

x

Les sommets sont deplaces au “centre” de leurs voisins.Le “centre” doit etre evaluee avec la metrique riemannienne.C’est la seule methode disponible pour adapter des maillagesstructures.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 79

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Fonction cout

Pour piloter le processus d’optimisation, il faut definir une fonctioncout. Pour un simplexe donne, cette fonction mesure la conformiteen taille et en forme entre le simplexe et la metrique riemannienne.

P. Labbe, J. Dompierre, M.-G. Vallet, F. Guibault et J.-Y. Trepanier. “A

Universal Measure of the Conformity of a Mesh with Respect to an Anisotropic

Metric Field”. International Journal for Numerical Methods in Engineering.

vol 61, p. 2675–2695, 2004.

Y. Sirois, J. Dompierre, M.-G. Vallet et F. Guibault. “Measuring the conformity

of non-simplicial elements to an anisotropic metric field”, International Journal

for Numerical Methods in Engineering. vol 64, p. 1944–1958, 2005.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 80

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Georg Friedrich Bernhard RIEMANN

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 81

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Best Grid, 8 ICNGG

“Best Grid” a la session posterde la 8th International Confer-ence on Numerical Grid Gen-eration in Computational FieldSimulations, juin 2002, Hon-olulu, HawaI.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 82

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Meshing Mæstro, 11 IMR

“Meshing Mæstro” a la sessionposter de la 11th InternationalMeshing Roundtable, septem-bre 2002, Ithaca, New York.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 83

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

Adaptation de maillages anisotropes

En 3D, il reste du travail.

L’espace n’est pas pavable par des tetraedres reguliers.

L’integration a la CAO est cruciale.

L’algorithme doit etre robuste.

Le temps de calcul devient contraignant.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 84

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Voronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

What to Retain

We want more than just a Delaunay mesh in theRiemannian metric. We want a Delaunay UNIT mesh inthe Riemannian metric.

Mesh adaptation is a optimisation problem with adiscrete part and a continuous part.

Our algorithm is a metaheuristic that convergesiteratively towards a better mesh by succesive localmodifications.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 85

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 86

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Lesson on Interpolation Error

For piecewise linear functions, the interpolation error iscontrolled by second order derivatives.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 87

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

L’erreur d’interpolation

a b

u

Soit u la solution exacte d’un probleme dans l’intervalle [a, b].

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 88

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Discretisation du domaine

Th

u

ba

Soit Th une triangulation du domaine.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 89

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

La solution interpolee Πhu

Πhu

Th

u

ba

Soit Πhu, la solution u interpolee sur l’ensemble des fonctions debase lineaires definies sur la triangulation Th.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 90

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

L’erreur d’interpolation ‖u − Πhu‖

Πhu

Th

u

ba

L’erreur d’interpolation ‖u − Πhu‖ est la difference entre lasolution exacte u et la solution interpolee Πhu.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 91

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

L’erreur d’interpolation ‖u − Πhu‖

Πhu

Th

u

ba

L’erreur d’interpolation ‖u − Πhu‖ pour des fonctions de baselineaires est dominee par la derivee seconde.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 92

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage optimal

u

Πhu

Thba

Pour un nombre donne de sommets, le maillage qui minimisel’erreur d’interpolation ‖u − Πhu‖ est celui qui concentre lessommets la ou la courbure est forte.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 93

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Erreur d’interpolation en 2D et 3D

En 2D, les derivees secondes de la solution u forment une matricehessienne

(

∂2u/∂x2 ∂2u/∂x∂y∂2u/∂y∂x ∂2u/∂y2

)

.

Si on rend la matrice hessienne definie positive, elle devient untenseur metrique.On definit ainsi un estimateur d’erreur anisotrope, qui ouvre la voiea l’adaptation de maillage anisotrope.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 94

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Exemple analytique

Le domaine Ω est le carre [0, 1]×[0, 1]. Le probleme est definicomme suit:

−∆u + k2u = 0 dans Ωu = g sur ∂Ω,

ou la condition de Dirichlet g est definie de telle sorte que lasolution analytique est donnee par

u = e−kx + e−ky .

Cette solution a des couches limites pour de grandes valeurs de k .

F. Guibault, P. Labbe et J. Dompierre. “Adaptivity Works! Controling the

Interpolation Error in 3D”. Fifth World Congress on Computational Mechanics,

Vienna University of Technology, 2002.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 95

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Solution analytique

u = e−kx + e−ky , k = 100.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 96

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillages adaptes

Gauche: Maillage uniforme de 268 sommets.

Centre: Maillage adapte isotrope de 268 sommets.

Droite: Maillage adapte anisotrope de 260 sommets.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 97

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Erreur d’interpolation

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1

Tot

al L

2 er

ror

1/sqrt(N)

L’erreur d’interpolation en norme L2 converge en O(h2).

Pour obtenir une erreur de 0.001, il faudrait

200 elements avec un maillage adapte anisotrope,2000 elements avec un maillage adapte isotrope,20000 elements avec un maillage uniforme.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 98

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

What to Retain

For piecewise linear functions, the interpolation error of afunction u is dominated by second order derivatives.

The hessian matrix is used to defined the metric tensor formesh adaptation.

Adapted anisotropic meshes minimize the interpolation errorfor a given number of nodes.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 99

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 100

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Lesson on Approximation Error

The approximation error is bounded by the interpolationerror.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 101

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

La solution approximee uh

uh

Thba

Soit uh, la solution approximee numeriquement sur latriangulation Th avec un resoluteur elements finis ou volumes finis.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 102

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

L’erreur d’approximation ‖u − uh‖

uh

Th

u

ba

L’erreur d’approximation ‖u − uh‖ est la difference entre lasolution exacte u et la solution numerique uh.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 103

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

L’erreur d’interpolation et d’approximation

uh

Th

u

ba

Πhu

Th

u

ba

Lemme de Cea:‖u − uh‖ < C‖u − Πhu‖

Si on controle l’erreur d’interpolation, on controle l’erreurd’approximation.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 104

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Exemple numerique

Navier-Stokes laminaire.

Profil NACA 0012.

Mach 2.0.

Reynolds 1000.

Angle d’attaque de 10 degres.

J. Dompierre, P. Labbe et F. Guibault. “Con-

trolling Approximation Error”. Second M. I. T.

Conference on Computational Fluid and Solid

Mechanics. Cambridge, MA, 2003.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 105

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillages et solutions adaptes

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 106

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Solution “exacte”

La solution “exacte” a 41 372 sommets et 81 899 triangles.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 107

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Convergence de ‖u − uh‖L2

0.001

0.01

0.1

1

0.01 0.1 1

log(‖

u−

uh‖

L2)

log(h)

ρ

♦♦

♦♦

♦♦

♦Mach

++

+

++

++

++

L’erreur d’approximation ‖u − uh‖ en norme L2 converge en O(h2).

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 108

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Ce qu’il faut retenir

The approximation error is bounded by the interpolationerror.

Adaptivity works! The approximation error is controlledby adapting a mesh according to the interpolation errorof a numerical solution.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 109

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 110

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

La simulation numerique certifiable?

On demande a trois utilisateurs de faire la simulation numeriquesuivante:

Cas test : Navier-Stokes laminaire autour d’un NACA 0012 aMach = 2 et Reynolds = 10000 avec trois maillages initiauxdifferents.

La simulation numerique est-elle certifiable, le resultat est-ilindependant de l’usager?

J. Dompierre, M.-G. Vallet, Y. Bourgault, M. Fortin et W. G. Habashi.

“Anisotropic Mesh Adaptation: Towards User-Independent, Mesh-Independent

and Solver-Independent CFD. Part III: Unstructured Meshes”. International

Journal for Numerical Methods in Fluids. vol. 39, p. 675–702, 2002.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 111

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage initial A

Maillage initial A et une solution initiale acceptable.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 112

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage initial B

Maillage initial B et une solution initiale grossiere.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 113

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage initial C

Maillage initial C et une solution initiale erronee.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 114

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

La simulation numerique n’est pas fiable

Trois usagers differents obtiennent trois solutions differentes...

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 115

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Evolution a partir du maillage A

Maillages et solutions aux etapes 0, 1, 2, 5 et 10.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 116

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Evolution a partir du maillage B

Maillages et solutions aux etapes 0, 1, 2, 5 et 10.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 117

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Evolution a partir du maillage C

Maillages et solutions aux etapes 0, 1, 2, 5 et 10.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 118

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Comparaison entre les solutions initiales et finales

Solutions initiales et finales pour les trois cas tests.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 119

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Superposition des trois solutions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 120

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

What to Retain

Three different users may obtain three different solutions tothe same problem.

Mesh adaptation makes the process automatic.

Automatic mesh adaptation leads to more certifiablenumerical simulations.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 121

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Comparaison de methodes numeriques

• Elements finis (NS2D)• Sylvain Boivin, UQAC• Forme primitive• Variables non

conservatives ρ, u, v , t• Lineaire pour ρ et t• ≃ quadratique pour u et v

• Implicite d’ordre 2 (Gear)avec GMRES non lineaire

• Code Fortran doubleprecision

• Volumes finis (NSC2KE)• Bijan Mohammadi, INRIA• Forme conservative• Variables conservatives ρ, ρu,ρv et ρE• Lineaire pour ρ, ρu, ρv et ρE• Schema de Roe, Oscher,cinematique d’ordre 1 et 2• Explicite Runge-Kutta 4• Code Fortran simpleprecision

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 122

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Cas test laminaire stationnaire

• NACA 0012.• Mach = 2.0.• Reynolds = 500.• Parois adiabatiques.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 123

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Comparaison elements finis – volumes finis

Sur le maillage initial.Elements finis a gauche, volumes finis a droite.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 124

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Superposition des solutions elements finis et volumes finis

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 125

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

What to Retain

The numerical scheme must be consistant with theequations to solve.

With mesh adaptation, the solution does not depend on thenumerical scheme.

Automatic mesh adaptation leads to more certifiablenumerical simulations.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 126

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Outline

1 OutlineGeneral Framework

2 Delaunay Mesh and its GeneralizationVoronoı Diagrams and Delaunay MeshesVoronoı Diagrams and Delaunay Meshes in NatureGeneralization of the Notion of DistanceConstruction of Adapted Anisotropic Meshes

3 Control of Error in Numerical SimulationInterpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

4 Conclusions

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 127

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Applications of Spatial Discretization Control

Historically, CFD leads research on mesh adaptation becausethe computational domain may be large while thephenomenon to modelize may be very localized, stretchedand complex.

Mesh adaptation can be applied to other fields of numericalsimuations.

More generally, mesh adaptation can be used in anyapplication that has spatial data to represent.

Moreover, mesh adaptation is one of the computatiomalgeometry tools.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 128

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Couplage avec NSU2D

Projet avec la division d’Aerodynamiqueavancee de Bombardier Aeronautique.

Adaptation de maillages non structurestriangulaires pour le resoluteur NSU2Dde Dimitri Mavriplis.

Etude de differentes strategiesd’adaptation (non structure et hy-bride) pour des geometries simples oucomplexes.

O. Manole, P. Labbe, J. Dompierre et J.-Y.

Trepanier. “Anisotropic Hybrid Mesh Adapta-

tion Using a Metric Field”. 16th AIAA Com-

putational Fluid Dynamics Conference, Orlando,

FL, AIAA–2003–3822, 2003Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 129

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Ecoulement turbulent avec le modele Spalart-Allmaras

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 130

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage adapte triangulaire non structure anisotrope

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 131

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage adapte hybride

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 132

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Profil multiple d’un Boeing 737

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 133

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Profil multiple d’un Boeing 737

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 134

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Couplage avec TASCflow

Projet avec Thi Cong Vu dela division GE Energy, Hydrode GE Canada.

Adaptation de maillagesstructures multiblocs nonconformes.

Les solutions sont calculeespar TASCflow.

T. C. Vu, F. Guibault, J. Dompierre, P.

Labbe et R. Camarero. “Computation of

Fluid Flow in a Model Draft Tube Us-

ing Mesh Adaptive Techniques”. Pro-

ceedings of the 20th Hydraulic Machin-

ery and Systems. Charlotte, NC, 2000.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 135

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage initial et solution

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 136

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage adapte et solution adaptee

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 137

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Couplage avec CFX5

Projet avec Thi Cong Vu de GEEnergy, Hydro de GE Canada.

Adaptation de maillages hybrides(peau de prismes et cœur detetraedres) et de maillagestetraedriques non structures.

Les solutions sont calculees parCFX 5.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 138

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage hybride

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 139

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage adapte tetraedrique

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 140

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Couplage avec deMon

Projet avec Martin Lebœuf duDepartement de chimie del’Universite de Montreal.

Adaptation de maillages nonstructures tetraedriques pour lecalcul des equations de Kohn-Shampour une molecule de glycine.

Les solutions sont calculees pardeMon.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 141

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage cartesien et solution

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 142

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage non structure tetraedrique adapte et solution

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 143

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maillage non structure tetraedrique adapte et solution

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 144

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

STM virtuelle

Scanning Tunneling Microscope (STM) est la microscopie a effettunel.

Projet de STM virtuelle par Stephane Bedwani sous la directiond’Alain Rochefort.

Laboratoire de nanostructures, Ecole Polytechnique de Montrealhttp://nanostructures.phys.polymtl.ca

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 145

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Molecule de benzene sur du cuivre

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 146

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Fil moleculaire auto-assemble

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 147

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Geographic Information Systems (GIS)

Les informations geographiques sont definies sur une grillereguliere.

La representation des donnees geographiques sur un maillageadapte permet une acceleration du rendu dans des applicationsgraphiques.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 148

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maui County (Lanai, Maui, Molokai), Hawaii

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 149

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maui County (Lanai, Maui, Molokai), Hawaii

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 150

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Maui County (Lanai, Maui, Molokai), Hawaii

1 442 401 sommets versus 77 510.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 151

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Representation d’images

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 152

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Representation d’images

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 153

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Representation d’images

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 154

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Representation d’images

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 155

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Traitement d’images biomedicales

Reconstruction 3D et modelisation surfacique de structuresanatomiques par traitement d’images biomedicales.

Olivier Courchesne, sous la direction de Farida Cheriet.Laboratoire LIV4D (Laboratoire d’imagerie et de vision 4D),Ecole Polytechnique de Montreal.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 156

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Transformation en maillage

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 157

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Segmentation du maillage

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 158

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Representation de surfaces

Donnees acquises par une camera 3D (www.inspeck.com)

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 159

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Interpolation ErrorApproximation ErrorImpact of Mesh Adaptation on Numerical SimulationApplications of Spatial Discretization Control

Courbure et adaptation surfacique

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 160

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Conclusion

Mesh adaptation is mainly developed for CFD applicationsbecause the computational domain may be large while thephenomenon to modelize may be very localized, stretchedand complex.

However, mostly any field of numerical simulation may takeadvantage of mesh adapdation to control the process ofnumerical simulation and to make it more certifiable.

Moreover, any scientific field with data defined on a discretemesh could take advantage of a better spatial discretization.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 161

OutlineDelaunay Mesh and its Generalization

Control of Error in Numerical SimulationConclusions

Conclusion

Even if this work is mainly about mesh adaptation, it is infact multidisciplinary and implies knowledge in mathematics,computer science and engineering.

In particular, this work needs knowledge in appliedmathematics, numerical methods, computational geometry,optimisation, metaheuristics, computer science andengineering.

A multidisciplinary work also implies collaboration betweenresearchers. It was done because it is useful and used bysomeone else.

Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 162