Geometric Modeling Based on Triangle Meshes

Post on 28-Oct-2021

8 views 0 download

transcript

Surface Parameterization

Christian RösslINRIA Sophia-Antipolis

Christian Rössl, INRIA 237

Outline

•Motivation

• Objectives and Discrete Mappings• Angle Preservation• Discrete Harmonic Maps• Discrete Conformal Maps• Angle Based Flattening

• Reducing Area Distortion

• Alternative Domains

Christian Rössl, INRIA 238

Surface Parameterization

[www.wikipedia.de]

Christian Rössl, INRIA 239

Surface Parameterization

[www.wikipedia.de]

Christian Rössl, INRIA 240

Surface Parameterization

Christian Rössl, INRIA 241

Motivation

•Texture mapping

Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002

Christian Rössl, INRIA 242

Motivation

•Many operations are simpler on planar domain

Lévy: Dual Domain Exrapolation, SIGGRAPH 2003

Christian Rössl, INRIA 243

Motivation

• Exploit regular structure in domain

Gu, Gortler, Hoppe: Geometry Images, SIGGRAPH 2002

Christian Rössl, INRIA 244

Surface Parameterization

Christian Rössl, INRIA 245

Surface Parameterization

f

X U

Jacobian

Christian Rössl, INRIA 246

Surface Parameterization

f

X U

dX = J dU

Christian Rössl, INRIA 247

Surface Parameterization

f

X U

dX = J dU

||dX ||2 = dU JTJ dU{ First Fundamental Form

Christian Rössl, INRIA 248

• By first fundamental form I– Eigenvalues λ1,2 of I

– Singular values σ1,2 of J (σi2= λi)

• Isometric

– I = Id, λ1= λ2=1

• Conformal

– I = µ Id , λ1 / λ2=1

• Equiareal

– det I = 1, λ1 λ2=1

Characterization of Mappings

angle preserving

area preserving

Christian Rössl, INRIA 249

Piecewise Linear Maps

•Mapping = 2D mesh with same connectivity

f

X U

Christian Rössl, INRIA 250

Objectives

• Isometric maps are rare

•Minimize distortion w.r.t. a certain measure– Validity (bijective map)

– Boundary

– Domain

– Numerical solution

triangle flip

e.g.,spherical

linear / non-linear?

fixed / free?

Christian Rössl, INRIA 251

Discrete Harmonic Maps

• f is harmonic if

• Solve Laplace equation

• In 3D: "fix planar boundary and smooth"

u and v are harmonic

Dirichlet boundary conditions

Christian Rössl, INRIA 252

Discrete Harmonic Maps

• f is harmonic if

• Solve Laplace equation• Yields linear system

• Convex combination maps

– Normalization

– Positivity

(again)

Christian Rössl, INRIA 253

Convex Combination Maps

• Every (interior) planar vertex is a convex combination of its neighbors

• Guarantees validity if boundary is mapped to aconvex polygon (e.g., rectangle, circle)

•Weights– Uniform (barycentric mapping)

– Shape preserving [Floater 1997]– Mean Value Coordinates [Floater 2003]

• Use mean value property of harmonic functions

Reproduction of planar meshes

Christian Rössl, INRIA 254

Conformal Maps

• Planar conformal mappings

satisfy the Cauchy-Riemann conditions

and

Christian Rössl, INRIA 255

Conformal Maps

• Planar conformal mappings

satisfy the Cauchy-Riemann conditions

• Differentiating once more by x and y yields

and

and ⇒

and similar

conformal ⇒ harmonic

Christian Rössl, INRIA 256

Discrete Conformal Maps

• Planar conformal mappings

satisfy the Cauchy-Riemann conditions

• In general, there are no conformal mappings for piecewise linear functions!

and

Christian Rössl, INRIA 257

Discrete Conformal Maps

• Planar conformal mappings

satisfy the Cauchy-Riemann conditions

• Conformal energy (per triangle T)

•Minimize

and

Christian Rössl, INRIA 258

Discrete Conformal Maps

• Least-squares conformal maps [Lévy et al. 2002]

• Satisfy Cauchy-Riemann conditions in least-squares sense

• Leads to solution of linear system

• Alternative formulation leads to same solution…

where→

Christian Rössl, INRIA 259

Discrete Conformal Maps

• Same solution is obtained for

cotangent weights

Neumann boundary conditions

[Desbrun et al. 2002]Discrete Conformal Maps

+ fixed vertices

Christian Rössl, INRIA 260

Discrete Conformal Maps

Christian Rössl, INRIA 261

Discrete Conformal Maps

• Free boundary depends on choice of fixed vertices (>1)

ABF

Christian Rössl, INRIA 262

Angle Based Flattening

• Perserve angles specify problem in angles– Constraints

• triangle• Internal vertex•Wheel consistency

– Objective function

ensure validity

preserve angles 2D ~3D

"optimal" angles (uniform scaling)

[Sheffer&de Sturler 2000]

Christian Rössl, INRIA 263

Angle Based Flattening

• Free boundary

• Validity: no local self-intersections• Non-linear optimization

Christian Rössl, INRIA 264

Angle Based Flattening

• Free boundary

• Non-linear optimization– Newton iteration– Solve linear system in every step

[Zayer et al. 2005]

Christian Rössl, INRIA 265

And how about area distortion?

Christian Rössl, INRIA 266

Reducing Area Distortion

• Energy minimization based on– MIPS [Hormann & Greiner 2000]

– modification [Degener et al. 2003]

– "Stretch" [Sander et al. 2001]

– modification [Sorkine et al. 2002]

or

Christian Rössl, INRIA 267

Non-Linear Methods

• Free boundary• Direct control over distortion

• No convergence guarantees• May get stuck in local minima• May not be suitable for large problems• May need feasible point as initial guess• May require hierarchical optimization even for

moderately sized data sets

Christian Rössl, INRIA 268

Linear Methods

• Efficient solution of a sparse linear system

• Guaranteed convergence

• Fixed convex boundary

• May suffer from area distortion for complex meshes

• An alternative approach to reducing area distortion…

– How accurately can we reproduce a surface on the plane?

– How do we characterize the mapping?

Christian Rössl, INRIA 269

Reducing Area Distortion

isometry

Christian Rössl, INRIA 270

Reducing Area Distortion

• Quasi-harmonic maps [Zayer et al. 2005]

• Iterate (few iterations)

– Determine tensor C from f– Solve for g

estimate from f

Christian Rössl, INRIA 271

Examples

Christian Rössl, INRIA 272

Examples

Stretch metric minimization

Using [Yoshizawa et. al 2004]

Christian Rössl, INRIA 273

Reducing Area Distortion

• Introduce cuts area distortion vs. continuity

• Often cuts are unavoidable (e.g., open sphere)

Treatment of boundary is important!

Christian Rössl, INRIA 274

Reducing Area Distortion

• Solve Poisson system [Zayer et al. 2005]

estimate from previous map

* Similar setting used in mesh editing

*

Christian Rössl, INRIA 275

Spherical Parameterization

• Sphere is natural domain for genus-0 surfaces

• Additional constraint

• Naïve approach– Laplacian smoothing and back-projection– Obtain minimum for degenerate configuration

Christian Rössl, INRIA 276

Spherical Parameterization

• (Tangential) Laplacian Smoothing and back-projection– Minimum energy is obtained for degenerate solution

• Theoretical guarantees are expensive– [Gotsman et al. 2003]

• A compromise?!– Stereographic projection– Smoothing in curvilinear coordinates

Christian Rössl, INRIA 277

Arbitrary Topology

•Piecewise linear domains– Base mesh obtained by mesh decimation

– Piecewise maps – Smoothness

Christian Rössl, INRIA 278

Literature

• Floater & Hormann: Surface parameterization: a tutorial and survey, Springer, 2005

• Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002

• Desbrun, Meyer, and Alliez: Intrinsic parameterizations of surface meshes, Eurographics 2002

• Sheffer & de Sturler: Parameterization of faceted surfaces for meshing using angle based flattening, Engineering with Computers, 2000.