GRP3F_FDR_presentation.ppt(13059kB)

Post on 19-Jun-2015

232 views 0 download

Tags:

transcript

Final Design Review 2008

TitanAVDASI Group 3F

Contents

• Requirements and Key Drivers• The Solution• Cabin Layouts• The Concept• Specialist Fields

Specification Analysis

Payload 150 t Min Hard

Range 5,500 nm Min Hard

Cruise Speed 0.75 Mach Min Soft

Take-off Field Length 2,800 m Max Hard

Time to Climb from 1500 to ICA 30 mins Max Soft

Initial Cruise Altitude 33,000 ft Min Soft

Minimum Cruise Altitude 41,000 ft Min Soft

Approach Speed 160 kts Max Soft

Landing Field Length 2,200 m Max Hard

Equivalent Cabin Alt. 8,000 ft Min Soft

Airport Compatibility limits ICAO code F Max Hard

DOC Reduction 15% per Tonne-mile Min Hard

Specification Analysis

Payload 150 t

Range 5,500 nm

Cruise Speed 0.85 Mach

Take-off Field Length 2,227 m

Time to Climb from 1500 to ICA 24 mins

Initial Cruise Altitude 36,000 ft

Minimum Cruise Altitude 42,000 ft

Approach Speed 152 kts

Landing Field Length 1159 m

Equivalent Cabin Alt. 8,000 ft

Airport Compatibility limits ICAO code F

DOC Reduction 15% per Tonne-mile

Market Drivers

Lower Empty Weight

Nose Door Loading

Compatible with Existing Ground Equipment

Compatible with Industry Standard 10 ft High Containers and Pallets

New Technology Cargo Loading System

Cruising Speed Close to Mach 0.85

Turn Around Time of 2 – 2.5 Hours Elapsed

One or No Pilot

Lower Noise Levels

Lower Emissions Levels

Pre PDRLoop 0Loop 1Loop 2

Evolution

Cabin Layout

Cabin Layout

• Titan can carry– 34 10 ft PMC pallets– 32 LD1 containers

• Compatible with industry standard AMC containers

• Payload density: 11.8 lb/ft3

• Net volume greater than 747-8F• Not disadvantaged at lower

payload densities

Advanced Cargo Handling System

• Fully automated loading sequence

• Load sensors allow the CG position to be monitored and controlled

• System can be monitored from cockpit

Weight and balance

DOC Reduction

HondaJet

Under the Wing Engines

Over the Wing Engines

VFW - 614

VFW - 614

Risks

• Low speed interference drag• Engine off condition• Structural issues• Engine maintenance

Engine Maintenance

Structures: Top Level Requirement Analysis

• Minimum structural weight– High stiffness to weight ratio

materials– Maximise structural synergies

• Maintainable, damage tolerant and reliable– Fewer structural components– Damage tolerant materials– Local strength reinforcement– Avoid complex structural

arrangement

Structures: Material Selection

• Economic viability• Consistent with future trends• Identification of potential

locations

Composites Trade Study

25

26

26

26

26

26

27

27

27

0 10 20 30 40 50 60 70 80 90 100

% Composites Use

DO

C/T

on

ne-

Mile

(ce

nts

)

Varying Composites % Varying Weight

0%10%

20%30%

40%50%

60%70%

80%90%

1960 1980 2000 2020 2040

Co

mp

osi

te U

sag

e (%

) A300

A310

A320

777

A380

787

TITAN

Structures: Issues

• Pylon– ½ tonne increase in pylon

weight– Titanium construction– ½ tonne margin for detailed

flutter analysis• T-Tail

– Fully composite tail– Structural synergies between

tail and fuselage structures

Structures: Issues

• Acoustic fatigue– Use of chevrons at engine

exhaust – Use of damped CFRP structure

through fibre coatings and surface treatments

• Wheel up landing– Kevlar fairing

• Engine access– Local kevlar reinforcing

Structures: Material Selection

Structures: Benefits

Reduction

Structural Weight 15%

OWE 11%

DOC 2%

Systems: Fuel Tanks

4132

17500LTail

55580L each1,2,3,4

Usable CapacityTank

100kWEach

4x PMG’s

100kW each2x Ground

Supply

250kW1x Starter/Generator

On APU

200kW each1.6MW total

2x Starter/ generators per engine

CapacityPower Source

743kW

-

8kW

5kW

-

30kW

50kW

200kW

250kW

200kW

Essential

205kW

-

-

5kW

-

-

Gravity

Any excess power

Any excess power

200kW

Emergency

864kW

1kW

28kW

5kW

100kW

30kW

50kW

200kW

250kW

200kW

Normal

Cargo Loading

Avionics

Lighting/galley/windshield,etc

Wheel Tug

Wing anti-icing

Undercarriage

Fuel

Total

ECS

Control Actuation

Power SinkDistribution

4x 270vDC buses

1x 270v DCEssential

Bus

28V locallyrectified

for AvionicsSuite

100kWEach

4x PMG’s

100kW each2x Ground

Supply

250kW1x Starter/Generator

On APU

200kW each1.6MW total

2x Starter/ generators per engine

CapacityPower Source

743kW

-

8kW

5kW

-

30kW

50kW

200kW

250kW

200kW

Essential

205kW

-

-

5kW

-

-

Gravity

Any excess power

Any excess power

200kW

Emergency

864kW

1kW

28kW

5kW

100kW

30kW

50kW

200kW

250kW

200kW

Normal

Cargo Loading

Avionics

Lighting/galley/windshield,etc

Wheel Tug

Wing anti-icing

Undercarriage

Fuel

Total

ECS

Control Actuation

Power SinkDistribution

4x 270vDC buses

1x 270v DCEssential

Bus

28V locallyrectified

for AvionicsSuite

100kWEach

4x PMG’s

100kW each2x Ground

Supply

250kW1x Starter/Generator

On APU

200kW each1.6MW total

2x Starter/ generators per engine

CapacityPower Source

743kW

-

8kW

5kW

-

30kW

50kW

200kW

250kW

200kW

Essential

205kW

-

-

5kW

-

-

Gravity

Any excess power

Any excess power

200kW

Emergency

864kW

1kW

28kW

5kW

100kW

30kW

50kW

200kW

250kW

200kW

Normal

Cargo Loading

Avionics

Lighting/galley/windshield,etc

Wheel Tug

Wing anti-icing

Undercarriage

Fuel

Total

ECS

Control Actuation

Power SinkDistribution

4x 270vDC buses

1x 270v DCEssential

Bus

28V locallyrectified

for AvionicsSuite

100kW

Each4x PMG’s

100kW each2x Ground

Supply

250kW

1x Starter/

Generator

On APU

200kW each

1.6MW total

2x Starter/ generators per engine

CapacityPower Source

743kW

-

8kW

5kW

-

30kW

50kW

200kW

250kW

200kW

Essential

205kW

-

-

5kW

-

-

Gravity

Any excess power

Any excess power

200kW

Emergency

864kW

1kW

28kW

5kW

100kW

30kW

50kW

200kW

250kW

200kW

Normal

Cargo Loading

Avionics

Lighting/galley/windshield,etc

Wheel Tug

Wing anti -icing

Undercarriage

Fuel

Total

ECS

Control Actuation

Power SinkDistribution

4x 270vDC buses

1x 270v DCEssential

Bus

28V locallyrectified

for AvionicsSuite

Systems: Electrical

Systems: Flight Deck

• Designed for single pilot operations, but able to support a two-man crew for flexibility

• Five 12”x9” switchable AMLCDs• Large format landscape displays

allow presentation of pilot-selectable system parameters on PFD

• Two extra AMLCD displays provide Class 3 EFBs

• Reduction of dedicated panels 'declutters' cockpit

Systems: Cockpit

12

34

5

1

2

Propulsion: Benefits

• Over the wing engines – reduces FOD ingestion– allows higher BPR engines

• Bleedless engines decrease fuel consumption and emissions.

Propulsion: Noise

• Wing as noise barrier• Rotor sweep optimisation• Chevrons for reduced jet velocity• Acoustic liner• Potential 20 – 30 dB reduction• ICAO Stage 3 limits

Propulsion: Emissions

• Bleedless engine• Compliance with CAEP 6

requirements• Wheel tug• Advanced TAPS combustor

Aerodynamics: Winglets

• Raked wing tips– Increased sweep locally– Increased wing aspect ratio– Improved low speed

performance– Reduction in drag during

transonic flight

Aerodynamics: Aerofoil

• Supercritical aerofoil– SC(2) Series– 10% t/c ratio over most of wing

• Wing jig-twist and t/c variation for elliptical lift distribution

Titan AR = 8.1

747-400F AR = 7.89

A380F AR = 7.54

0.022

0.0225

0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 8.6

AR

CD

i

Aerodynamics: Aspect Ratio

8.1

Aerodynamics: Drag Breakdown

Balanced Field Length

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Engine Failure Vel. (m/s)

Leng

th (m

)

TO dist.(n-1)

ASD

RunwayLength

TO dist.(n)

1.15TOD (n)

Performance: Balanced Field Length

2375 m

Performance: Payload Range Diagram

TITAN Payload-Range Diagram

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 1000 2000 3000 4000 5000 6000 7000 8000

Range

Pay

load 160 tonnes

3000 nm

150 tonnes5500 nm

Performance: Mission Profile

150 tonnes 5500 nm 12 hrs

80 tonnes 3000 nm 6.8 hrs

Economics: DOC Reduction Against A380

DepreciationInterestInsurance

11%

Airframe MaintenanceEngine Maintenance

Landing FeesNavigation ChargesCockpit Crew

Fuel

3%

7% 14%

Economics: DOC Reduction

A380F

B747-8F

B747-4F

Advanced Conventional Configuration

9%16%

7%15%

Economics: Breakeven Analysis

-10,000,000,000

-8,000,000,000

-6,000,000,000

-4,000,000,000

-2,000,000,000

0

2,000,000,000

4,000,000,000

6,000,000,000

8,000,000,000

10,000,000,000

2009 2014 2019 2024 2029 2034 2039

Year

Cu

mu

lati

ve C

ash

Flo

w (

$) $7.5b2031

Review

Thank You For Listening