GunnarBali withMaurizioAlberti,SaraCollins ... - ias.tum.de fileOutline Motivation Hadroquarkonium...

Post on 16-Oct-2019

0 views 0 download

transcript

Hadroquarkonium from Lattice QCD

Gunnar Bali

with Maurizio Alberti, Sara Collins, Francesco Knechtli, Graham Moir,Wolfgang Söldner

Wuppertal – Regensburg – Cambridge

Symposium on EFTs and LGT TUM IAS, May 21, 2016

Outline

MotivationHadroquarkoniumLattice simulationSummary

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 2 / 21

Recent charmonium spectrum resultsHPQCD [arXiv:1411.1318] ETMC [arXiv:1510.07862]

0−+ 1−− 1+− 0++ 1++

JPC

3.0

3.2

3.4

3.6

3.8

Mas

s/

GeV χc0

χc1

ηc

η′c

hc

J/Ψ

Ψ′

expt (PDG)

m`/ms = 1/5

m`/ms = 1/10

m`/ms = phys

1

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

0−+

0++

1−−

1++

1+−

2++

2−+

2−−

3−−

ηc χc0 J/Ψ χc1 hc χc2 ηc2 Ψ2

meson m

ass in G

eV

A1T1

ET2

exp.

χQCD [arXiv:1410.3343]

0.6

0.8

1

1.2

1.4

1.6

r0(fm) mc ms MJ/ψ-Mηc

Mχc0

Mχc1

MhcfDs

Ratio

1.09(3)0.095(5)

0.1132(7)3.41475(31)

3.51066(7)3.52541(16)

0.2575(46)

0.465(10)1.118(25)

0.101(7)0.119(7)

3.439(44)3.524(66)

3.518(71)0.2536(43)

Exp (PDG)this work (MDs

, MDs* and MJ/ψ as Input)

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 3 / 21

However ∃ many states near thresholds

1974 – 1977: 10 cc̄ resonances, 1978 – 2001: 0 cc̄’s2002 – 13: ≤ 12 new cc̄’s found by BaBar, Belle, CLEO-c, CDF, D0

4.6

4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

L = 2L = 1L = 0

m/G

eV

ηc

J/ψ

ψ(2S)

ψ(4040)

ψ(4415)

χc

ψ(3770)

ψ(4160)

ηc(2S)

hc

Y(4260)

X(3871/3875)X(3943)

Y(3940)Z(3934)

Y(4660)

Y(4350)

X(4160)

DD

DD*

D*D

*

DD**

DsDs

DsDs* Ds

*Ds

*

---

-

-- -

Z+(4430)

standard?????

new detectorshigher luminositynew channels:

B decaysγγ

ψψ-productiongg in pp collisions.Will there be pp̄?Discoveries at LHC!cq̄qc̄ ?cgc̄ hybrids ?

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 4 / 21

Near threshold states and resonancesMultihadron channels need to be included!Recent studies, open charm:

D∗s0(2317) [DK ] JP = 0+, Ds1(2460) [D∗K ] JP = 1+ Lang et al.

[1403.8103]D∗

0 (2400) [D̄π] JP = 0+, D1(2430) [D̄∗π] JP = 1+, Mohler et al.[1208.4059]

Hidden charm:ψ(3770) JPC = 1−−, χc0(2P) JPC = 0++ [D̄D] Lang et al. [1503.05363].X (3872) I = 0 [DD̄∗, J/ψω] JPC = 1++, Prelovsek et al. [1307.5172],DeTar et al. [1411.1389], update in [1508.07322].X (3872) I = 1 [DD̄∗, J/ψρ, (c̄ d̄)(cu)] JPC = 1++ Padmanath et al.[1503.03257], no candidate found.Y (4140) [J/ψφ, DsD̄∗

s , (c̄ s̄)(cs)] JPC = 1++ channel Padmanath et al.[1503.03257], s- and p-wave scattering Ozaki et al. [1211.5512], nocandidate found.Zc(3900)+ [J/ψπ, DD̄∗, ηcρ, . . . ] IG (JP) = 1+(1+), Prelovsek et al.[1405.7623], Lee et al. [1411.1389], no candidate found.

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 5 / 21

Zc(3900)+, IG(JP) = 1+(1+)

Prelovsek et al. [1405.7623]

Lattice

D(2) D*(-2)

D*(1) D*(-1)

J/ψ(2) π(−2)ψ

3 π

D(1) D*(-1)ψ

1Dπ

D* D*η

c(1)ρ(−1)

ψ2S

π

D D*j/ψ(1) π(-1)η

c ρ

J/ψ π

Exp.

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E[G

eV]

Even in this “simple” casewhere the minimal configu-ration consists of four quarksand mixing with standardcharmonia can be excluded,a huge number of channelsneeds to be considered!

Basis of 22 operators: no candidate for a Z+c found below 4.2 GeV.

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 6 / 21

LHCb: pentaquarks are back

[GeV]pψ/Jm4 4.2 4.4 4.6 4.8 5

Eve

nts/

(15

MeV

)

0

100

200

300

400

500

600

700

800

LHCb(b)

Re A

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.1

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

LHCb

(4450)cP

(a)

15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

(4380)cP

(b)

Pc Re APc

Im A

P c

P+c (4380) (JP = 3

2−) and P+

c (4450) (JP = 52+) from Λb → J/ψpK

[LHCb: R. Aaij et al, 1507.03414].

Conjecture of attractive forces between charmonium and pp systems:[S. Brodsky, I. Schmidt, G. de Teramond, PRL64 (90) 1011].

Many interpretations, pre- and post-dictions (190 citations).

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 7 / 21

5 quark (4 q, 1 q̄) systems are very difficult to study directly on thelattice, in particular if many decay channels are possible.

What about testing a particular model instead?Hadroquarkonia: [S. Dubynskiy, M. Voloshin 0803.2224]: Quarkoniabound within ordinary hadrons.

Many combinations of baryon plus charmonium are close-by. Examples:

JP = 32

−: m(∆) + m(J/ψ) ≈ 4329MeV vs. 4380MeV (width 200MeV).

JP = 52+: m(N) + m(χc2) ≈ 4496MeV vs. 4450MeV (width 40MeV).

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 8 / 21

Quarkonia and potentialsmQ,mQv � ΛQCD, v � 1 −→ Non-relativistic approach (pNRQCD):

Hψnlm = Enlψnlm , H = 2(mQ − δmQ) +p2

mQ+ V0(r) + · · ·

-1.5

-1

-0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V(r

)/G

eV

r/fm

Σu-

Πu

Σg+

V0(r) can be computed on thelattice.(also 1/mQ and 1/m2

Q correc-tions)

Does this apply to charmonia?Is v . 0.5� 1?Is mcv ≈ 600MeV� ΛQCD?

Nevertheless, we can say some-thing about bottomonia andprovide guidance for charmonia.

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 9 / 21

Hadroquarkonia in the static limitThis particular picture can be tested in the static limit.Does the static potential V0(r) become more or less attractive in thebackground of a light hadron?

���������������

���������������

���������������

���������������

��������������������������������������������������

ttδ tδ

r

Create a zero-momentum projected hadronic state |H〉 at the time 0.Let it propagate to δt, create a quark-antiquark “string”.Destroy this at t + δt and the light hadron at t + 2δt.In the limit t →∞ compute

∆VH(r , δt) = VH(r , δt)− V0(r)

and extrapolate δt →∞.Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 10 / 21

CLS Ensembles

Nf = 2 + 1 CLS ensembles with 2m` + ms = const.(∃ additional sets with m̃s = const and m` = ms)

150

200

250

300

350

400

450

0 0.002 0.004 0.006 0.008 0.01

physical

U103H101

U102H102

U101H105N101

S100C101D101

D150

H402H400B450

S400

N401

H200N202

N203

S201N200

D200

N300N301

N302

J303

J500

J501

mπ[M

eV]

a2[fm2]

U: 128× 243

B: 64× 323

H: 96× 323

S: 128× 323

C: 96× 483

N: 128× 483

D: 128× 643

J: 192× 643

CLS: HU Berlin, TC Dublin, UA Madrid, Mainz, Milano Bicocca,Regensburg, Roma I, Roma II, Wuppertal, DESY Zeuthen

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 11 / 21

Lattice details

We want a large volume that comfortably accommodates the hadron.

We wish to go to realistically light quark masses but not too light sincethen correlation functions can become noisy and statistically lessmeaningful.

Nf = 2 + 1 CLS ensemble C101 (96× 483 sites):

Mπ = 220MeV, MK = 470MeV, LMπ ≈ 4.6, L ≈ 4.1 fm, a ≈ 0.086 fm.

High statistics: 1552 configs, separated by 4 MDUs, times 12 hadronsources (1 forward, 1 backward, 10 forward and backward propagating ⇒22 2-point functions). Wilson loops at all positions and in all directions.

Wilson loops are optimized using four smearing levels and ground stateoverlap of the hadronic two-point function is optimized too.

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 12 / 21

QQ binding energy shift “within” a pion

[M. Alberti et al, PRELIMINARY]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8−6

−5

−4

−3

−2

−1

0

r [fm]

∆VΠ(r

)[M

eV]

Π

Preliminary

δ t = 0

δ t = 3

δ t = 6

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 13 / 21

Within a kaon

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8−7

−6

−5

−4

−3

−2

−1

0

r [fm]

∆V

K(r

)[M

eV]

K

Preliminary

δ t = 0

δ t = 3

δ t = 6

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 14 / 21

Within a φ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9−9

−8

−7

−6

−5

−4

−3

−2

−1

0

r [fm]

∆V

φ(r

)[M

eV]

φ

Preliminary

δ t = 0

δ t = 3

δ t = 6

Here we have to be careful with polarizations!

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 15 / 21

QQ binding energy shift “within” a nucleon

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8−7

−6

−5

−4

−3

−2

−1

0

r [fm]

∆V

N+(r

)[M

eV]

N+

Preliminary

δ t = 0

δ t = 3

δ t = 6

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 16 / 21

Within a cascade

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8−7

−6

−5

−4

−3

−2

−1

0

r [fm]

∆VΞ

+(r

)[M

eV]

Ξ+

Preliminary

δ t = 0

δ t = 3

δ t = 6

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 17 / 21

... and negative parity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7−8

−7

−6

−5

−4

−3

−2

−1

0

r [fm]

∆VΞ

−(r

)[M

eV]

Ξ−

Preliminary

δ t = 0

δ t = 3

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 18 / 21

Within a decuplet cascade

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9−12

−10

−8

−6

−4

−2

0

r [fm]

∆VΞ

∗+(r

)[M

eV]

Ξ*+

Preliminary

δ t = 0

δ t = 3

δ t = 6

Again we have to be careful with the helicity!Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 19 / 21

What does this mean?In the absence of a light hadron the slope of V0 is ≈ 1GeV/ fm.Within VH this is reduced by ≈ 3MeV/(0.5 fm) ≈ 6%�.The heavy quarks are a bit weaker bound but is there any energy gain?

Virial theorem for a purely linear potential V (r) = σr :

2〈T 〉 =

⟨r dV

dr

⟩= σ〈r〉 = 2E − 2〈V 〉 = 2E − 2σ〈r〉

This means 〈r〉 = 2E/(3σ). Feynman-Hellmann:

∂E∂σ

=

⟨∂H∂σ

⟩= 〈r〉 =

2E3σ

=⇒ E (σH) = E (σ0) + (σH − σ)∂E∂σ

∣∣∣∣σ=σ0

=

(1 + 2σH

σ0

) E (σ0)

3A 6%� smaller σ gives a 4%� smaller energy (adding to 2mQ). The realworld effect is smaller as the potential also contains a Coulomb term.So this amounts to |∆E | = 1–2MeV.

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 20 / 21

Summary and Outlook

Heavy quark states are narrower and cleaner than many light quarkresonances. Theoretically, the heavy quark limit provides guidance.This is a prime arena for addressing “exotic” spectroscopy.Threshold states with hidden charm or bottom are a huge challenge,however, some aspects can be addressed within approximationsand/or model assumptions.Pentaquarks are back! For how long?Modifications of the static potential in the presence of light hadronsappear tiny (similarly small as in the deuteron). Is this the end ofhadro-quarkonia?Interestingly, there appears to be similar attraction in all of thechannels investigated so far.

Gunnar Bali (Regensburg) Hadroquarkonium TUM IAS 21.5.2016 21 / 21