High-Energy Cosmic Particles by Black-hole Jets in Galaxy ...crphys2020/slide/S6_Fang.pdf · with...

Post on 24-Feb-2021

2 views 0 download

transcript

1

High-Energy Cosmic Particles by Black-hole Jets in Galaxy Clusters

Ke Fang Einstein Fellow, Stanford University

YITP Workshop, Kyoto, Japan (virtual attendance) Dec 10, 2020

2

• A “common origin” of cosmic particles?

• Cosmic-ray acceleration and confinement

• Astroparticles from galaxy clusters

3

• A “common origin” of cosmic particles?

• Cosmic-ray acceleration and confinement

• Astroparticles from galaxy clusters

4

UHECRs, High-energy Neutrinos & Gamma Rays

Ultrahigh Energy Cosmic Ray (UHECR)

5

Ultrahigh Energy Cosmic Ray (UHECR)

Telescope Array, ICRC (2015)

UHECRs, High-energy Neutrinos & Gamma Rays

6

Light component in the transition

regimeKASCADE, LOFAR,

IceTop

KASCADE-Grande (ICRC 2017)

UHECRs, High-energy Neutrinos & Gamma Rays

7

TeV - PeV: Detected by IceCube since 2013

UHECRs, High-energy Neutrinos & Gamma Rays

1010 1012 1014 1016 1018 1020

Emax [eV]

1042

1043

1044

1045

1046

1047

E opt[e

rgM

pc°

3yr

°1 ]

novae

SLSNe-I

SLSNe-II

SN-IIn

CCSNeTDE

FBOT

Luminous FBOTIa-CSM

≤rel <1%

≤rel <100%

E∫ > 100 TeV

IceCube DiÆuse Neutrinos

8

Neutrino Sources are Powerful and Abundant!

KF, Metzger, Vurm, Aydi, Chomiuk (2020)

Transients powered by non-relativistic shocks can barely explain the IceCube diffuse neutrinos.

9

~14% of the Fermi extragalactic gamma-ray background is contributed by unknown sources. Fermi Collabora,on (2016)

Lisan, et al (2016)

UHECRs, High-energy Neutrino & Gamma Rays

10

When putting them together..

Despite ten orders of magnitudes difference in energy, UHECRs, IceCube neutrinos, Fermi non-blazar EGB share similar energy injection rate.

Murase, Ahlers & Lacki (2013), Waxman 1312.0558, Giacin, et al (2015), Murase & Waxman (2016), Wang & Loeb (2017) …

11

A common origin is nontrivialThe sources need to provide the right

interaction probability

Truncation / hard spectrum below ~TeV

[e.g., Murase, Guetta & Ahlers, (2016), Bechtol+ (2017)] Neutrinos above 10 PeV?

[IceCube Coll. (2018)]

12

• A “common origin” of cosmic particles?

• Cosmic-ray acceleration and confinement

• Astroparticles from galaxy clusters

13

• “Mini AGN” in our own galaxy with extended X-ray jets

Black Hole Jets as Cosmic Accelerators Microquasar SS 433

ROSAT 0.2 keVHAWC ~20 TeV

• TeV gamma-rays in both lobes detected by HAWC

HAWC Collaboration, Nature (2018)KF as a main author

• GeV counterparts identified in Fermi-LAT data

KF, Charles, Blandford, ApJL (2020)

14

HAWC Collaboration, Nature (2018)KF as a main author

KF, Charles, Blandford, ApJL (2020)

ROSAT 0.2 keVHAWC ~20 TeV

• Electrons above 20 TeV were accelerated

• Particle acceleration sites ~30 pc away from hole

E ⇠ Z 1019✓

B

1µG

◆✓R

10 kpc

◆eV

Scaling to jets of supermassive black holes:

15

Confinement of Cosmic Rays in Local Environment Cygnus Cocoon

GeV to100 TeV gamma-rays trace infrared emission

HAWC Collaboration, under reviewKF as a main author

Fermi-LAT Coll., Science (2011)

16

• A “common origin” of cosmic particles?

• Cosmic-ray acceleration and confinement

• Astroparticles from galaxy clusters

17

nICM(r) = nICM,0

"1 +

✓r

rc

◆2#�3�/2ICM gas

Radiation backgrounds: Infrared background from galaxies, CMB, Extragalactic background lights

Magnetic field following Kolmogorov turbulence

The Intracluster Medium Environment for Interactions

B(M, r) / n(M, r)2/3<latexit sha1_base64="DS9xHIPyfJRWK8HNftiRbvY4dzM=">AAACA3icbVBLSwMxGMz6rPW16k0vwSJUkLpbBT2WevEiVLAPaNeSTbNtaDZZkqxQloIX/4oXD4p49U9489+YbvegrQOBycz3kcz4EaNKO863tbC4tLyymlvLr29sbm3bO7sNJWKJSR0LJmTLR4owykldU81IK5IEhT4jTX94NfGbD0QqKvidHkXEC1Gf04BipI3UtferxZsTedyJpIi0gDy93Sfl07Nx1y44JScFnCduRgogQ61rf3V6Asch4RozpFTbdSLtJUhqihkZ5zuxIhHCQ9QnbUM5ConykjTDGB4ZpQcDIc3hGqbq740EhUqNQt9MhkgP1Kw3Ef/z2rEOLr2E8ijWhOPpQ0HMoEk7KQT2qCRYs5EhCEtq/grxAEmEtaktb0pwZyPPk0a55Dol9/a8UKlmdeTAATgEReCCC1AB16AG6gCDR/AMXsGb9WS9WO/Wx3R0wcp29sAfWJ8/GNaV4Q==</latexit><latexit sha1_base64="DS9xHIPyfJRWK8HNftiRbvY4dzM=">AAACA3icbVBLSwMxGMz6rPW16k0vwSJUkLpbBT2WevEiVLAPaNeSTbNtaDZZkqxQloIX/4oXD4p49U9489+YbvegrQOBycz3kcz4EaNKO863tbC4tLyymlvLr29sbm3bO7sNJWKJSR0LJmTLR4owykldU81IK5IEhT4jTX94NfGbD0QqKvidHkXEC1Gf04BipI3UtferxZsTedyJpIi0gDy93Sfl07Nx1y44JScFnCduRgogQ61rf3V6Asch4RozpFTbdSLtJUhqihkZ5zuxIhHCQ9QnbUM5ConykjTDGB4ZpQcDIc3hGqbq740EhUqNQt9MhkgP1Kw3Ef/z2rEOLr2E8ijWhOPpQ0HMoEk7KQT2qCRYs5EhCEtq/grxAEmEtaktb0pwZyPPk0a55Dol9/a8UKlmdeTAATgEReCCC1AB16AG6gCDR/AMXsGb9WS9WO/Wx3R0wcp29sAfWJ8/GNaV4Q==</latexit><latexit sha1_base64="DS9xHIPyfJRWK8HNftiRbvY4dzM=">AAACA3icbVBLSwMxGMz6rPW16k0vwSJUkLpbBT2WevEiVLAPaNeSTbNtaDZZkqxQloIX/4oXD4p49U9489+YbvegrQOBycz3kcz4EaNKO863tbC4tLyymlvLr29sbm3bO7sNJWKJSR0LJmTLR4owykldU81IK5IEhT4jTX94NfGbD0QqKvidHkXEC1Gf04BipI3UtferxZsTedyJpIi0gDy93Sfl07Nx1y44JScFnCduRgogQ61rf3V6Asch4RozpFTbdSLtJUhqihkZ5zuxIhHCQ9QnbUM5ConykjTDGB4ZpQcDIc3hGqbq740EhUqNQt9MhkgP1Kw3Ef/z2rEOLr2E8ijWhOPpQ0HMoEk7KQT2qCRYs5EhCEtq/grxAEmEtaktb0pwZyPPk0a55Dol9/a8UKlmdeTAATgEReCCC1AB16AG6gCDR/AMXsGb9WS9WO/Wx3R0wcp29sAfWJ8/GNaV4Q==</latexit><latexit sha1_base64="DS9xHIPyfJRWK8HNftiRbvY4dzM=">AAACA3icbVBLSwMxGMz6rPW16k0vwSJUkLpbBT2WevEiVLAPaNeSTbNtaDZZkqxQloIX/4oXD4p49U9489+YbvegrQOBycz3kcz4EaNKO863tbC4tLyymlvLr29sbm3bO7sNJWKJSR0LJmTLR4owykldU81IK5IEhT4jTX94NfGbD0QqKvidHkXEC1Gf04BipI3UtferxZsTedyJpIi0gDy93Sfl07Nx1y44JScFnCduRgogQ61rf3V6Asch4RozpFTbdSLtJUhqihkZ5zuxIhHCQ9QnbUM5ConykjTDGB4ZpQcDIc3hGqbq740EhUqNQt9MhkgP1Kw3Ef/z2rEOLr2E8ijWhOPpQ0HMoEk7KQT2qCRYs5EhCEtq/grxAEmEtaktb0pwZyPPk0a55Dol9/a8UKlmdeTAATgEReCCC1AB16AG6gCDR/AMXsGb9WS9WO/Wx3R0wcp29sAfWJ8/GNaV4Q==</latexit>

KF & Olinto (2017)KF & Murase Nature Physics (2018)

Strength of magnetic field in the core of a galaxy cluster

CRPropa3 + SOPHIA for turbulent field & [Ba,sta+ JCAP (2016)]

EPOS for [KF, Kotera & Olinto ApJ (2012)]

Diffuse propaga@on [Kotera & Lemoine PRD (2007), KF & Olinto ApJ (2016)]

N�

Np

18

Dtotal = 46Mpc

Bc = 10µG,M = 1015 M�

Particle Larmor RadiusrL = 10E19 B

�1�6 Z

�1 kpc

Field Correlation Length

l0 ⇠ 20 kpc

Particle Trajectory in the Intracluster Medium - 10 EeV

KF & Murase Nature Physics (2018)

19

Bc = 10µG,M = 1015 M�

Particle Larmor Radius

rL = 0.1E17 B�1�6 Z

�1 kpc<latexit sha1_base64="1IkbeNwFzqpHyLOWl7Av/sV7vi0=">AAACGXicbVDLSgMxFM34rPU16tJNsAgu2jIRsW6EqgguXFSwD+yMQyZN29DMgyQjlGF+w42/4saFIi515d+YtrPQ1gMhJ+fcy809XsSZVJb1bczNLywuLedW8qtr6xub5tZ2Q4axILROQh6Klocl5SygdcUUp61IUOx7nDa9wcXIbz5QIVkY3KphRB0f9wLWZQQrLbmmJdxreAqtMoJ28dJNUCW1i+duUjpO75MS0o+77LaFDwcRcc2CVbbGgLMEZaQAMtRc89PuhCT2aaAIx1K2kRUpJ8FCMcJpmrdjSSNMBrhH25oG2KfSScabpXBfKx3YDYU+gYJj9XdHgn0ph76nK32s+nLaG4n/ee1YdU+chAVRrGhAJoO6MYcqhKOYYIcJShQfaoKJYPqvkPSxwETpMPM6BDS98ixpHJaRDvbmqFA9y+LIgV2wBw4AAhVQBVegBuqAgEfwDF7Bm/FkvBjvxsekdM7IenbAHxhfPyEfnU4=</latexit><latexit sha1_base64="1IkbeNwFzqpHyLOWl7Av/sV7vi0=">AAACGXicbVDLSgMxFM34rPU16tJNsAgu2jIRsW6EqgguXFSwD+yMQyZN29DMgyQjlGF+w42/4saFIi515d+YtrPQ1gMhJ+fcy809XsSZVJb1bczNLywuLedW8qtr6xub5tZ2Q4axILROQh6Klocl5SygdcUUp61IUOx7nDa9wcXIbz5QIVkY3KphRB0f9wLWZQQrLbmmJdxreAqtMoJ28dJNUCW1i+duUjpO75MS0o+77LaFDwcRcc2CVbbGgLMEZaQAMtRc89PuhCT2aaAIx1K2kRUpJ8FCMcJpmrdjSSNMBrhH25oG2KfSScabpXBfKx3YDYU+gYJj9XdHgn0ph76nK32s+nLaG4n/ee1YdU+chAVRrGhAJoO6MYcqhKOYYIcJShQfaoKJYPqvkPSxwETpMPM6BDS98ixpHJaRDvbmqFA9y+LIgV2wBw4AAhVQBVegBuqAgEfwDF7Bm/FkvBjvxsekdM7IenbAHxhfPyEfnU4=</latexit><latexit sha1_base64="1IkbeNwFzqpHyLOWl7Av/sV7vi0=">AAACGXicbVDLSgMxFM34rPU16tJNsAgu2jIRsW6EqgguXFSwD+yMQyZN29DMgyQjlGF+w42/4saFIi515d+YtrPQ1gMhJ+fcy809XsSZVJb1bczNLywuLedW8qtr6xub5tZ2Q4axILROQh6Klocl5SygdcUUp61IUOx7nDa9wcXIbz5QIVkY3KphRB0f9wLWZQQrLbmmJdxreAqtMoJ28dJNUCW1i+duUjpO75MS0o+77LaFDwcRcc2CVbbGgLMEZaQAMtRc89PuhCT2aaAIx1K2kRUpJ8FCMcJpmrdjSSNMBrhH25oG2KfSScabpXBfKx3YDYU+gYJj9XdHgn0ph76nK32s+nLaG4n/ee1YdU+chAVRrGhAJoO6MYcqhKOYYIcJShQfaoKJYPqvkPSxwETpMPM6BDS98ixpHJaRDvbmqFA9y+LIgV2wBw4AAhVQBVegBuqAgEfwDF7Bm/FkvBjvxsekdM7IenbAHxhfPyEfnU4=</latexit><latexit sha1_base64="1IkbeNwFzqpHyLOWl7Av/sV7vi0=">AAACGXicbVDLSgMxFM34rPU16tJNsAgu2jIRsW6EqgguXFSwD+yMQyZN29DMgyQjlGF+w42/4saFIi515d+YtrPQ1gMhJ+fcy809XsSZVJb1bczNLywuLedW8qtr6xub5tZ2Q4axILROQh6Klocl5SygdcUUp61IUOx7nDa9wcXIbz5QIVkY3KphRB0f9wLWZQQrLbmmJdxreAqtMoJ28dJNUCW1i+duUjpO75MS0o+77LaFDwcRcc2CVbbGgLMEZaQAMtRc89PuhCT2aaAIx1K2kRUpJ8FCMcJpmrdjSSNMBrhH25oG2KfSScabpXBfKx3YDYU+gYJj9XdHgn0ph76nK32s+nLaG4n/ee1YdU+chAVRrGhAJoO6MYcqhKOYYIcJShQfaoKJYPqvkPSxwETpMPM6BDS98ixpHJaRDvbmqFA9y+LIgV2wBw4AAhVQBVegBuqAgEfwDF7Bm/FkvBjvxsekdM7IenbAHxhfPyEfnU4=</latexit>

Field Correlation Length

l0 ⇠ 20 kpc

KF & Murase Nature Physics (2018)Dtotal ⇠ tcluster

Particle Trajectory in the Intracluster Medium - 0.1 EeV

20

Bddvnvmbujpo!bu!mpx!F

Tpgufs!tqfdusvn!evf!up!DS!ftdbqf

Bc = 10µG,M = 1015 M�

Neutrino Spectrum from One Cluster

21

Injection Composition = Galactic CR abundance

IceCube (>100 TeV)

UHECRs

Non-blazar Extragalactic Gamma-ray Background

Cosmic Particles from Black Hole Jets in Galaxy ClustersKF & Murase Nature Physics (2018)

22

Fits to UHECR data

KF & Murase (2018)

23

Accretion Shocks around Galaxy Cluster

Due to low baryon density at the outskirts of clusters, particle interaction near accretion shocks is too weak to explain observed high-energy neutrinos.

KF & Olinto (2017)

24

• Sources of high-energy neutrinos and ultrahigh energy cosmic rays are abundant and powerful

• Cosmic-ray acceleration and confinement commonly exist in astrophysical environments

• A “common origin” of cosmic particles may be explained by black hole jets in galaxy clusters

Conclusion

25

• What’s your targeted physics in next decade? Sources of high-energy neutrinos High-energy messengers (gamma rays and neutrinos) from transients such as TDEs, binary mergers

• What we need to accomplish? Design and planning of next-generation astroparticle experiments Data analysis infrastructures that enable collaboration of different experiments

Conclusion

26

Cosmic Ray Production by the Jet

Cosmic rays that are confined by the radio lobes cool adiabatically

*taking a typical lobe size 10 kpc, coherence length 0.3 kpc, magnetic field strength 5 muG, and expansion velocity 2000 km/s.

Only particles above ~PeV leave the source

*tlobedi↵ ⇠ 6.1

✓E/Z

1PeV

◆�1/3

Myr

tcool ⇠ 5Myr

E ⇠ Z 1019✓

B

1µG

◆✓R

10 kpc

◆eV

27

Neutrino Sources are Powerful and Abundant!

KF, Metzger, Vurm, Aydi, Chomiuk (2020)

Transients powered by non-relativistic shocks can barely explain the IceCube diffuse neutrinos.

106 107 108 109 1010

vsh [cm s°1]

104

105

106

107

A/A

§

Lsh = 1036 1040 1044

tpk = 3

tpk = 30

tpk = 300

Emax = 1012 1014 1016

radiative adiabatic

tcool = tpk tpp = tpk

novae

LRN

SLSNe-ISLSNe-II

SN-IIn

CCSNe

TDE

FBOT

Luminous FBOT

Ia-CSM

1010 1012 1014 1016 1018 1020

Emax [eV]

1042

1043

1044

1045

1046

1047

E opt[e

rgM

pc°

3yr

°1 ]

novae

SLSNe-I

SLSNe-II

SN-IIn

CCSNeTDE

FBOT

Luminous FBOTIa-CSM

≤rel <1%

≤rel <100%

E∫ > 100 TeV