Imaging RNA structures and folding intermediates using ... · University of Chicago. RNA can form...

Post on 29-Jul-2020

3 views 0 download

transcript

Imaging RNA structures and folding intermediates using electron cryo-microscopy

Tobin R. SosnickDept. of Biochemistry and Molecular Biology

Institute for Biophysical DynamicsUniversity of Chicago

RNA can form irregular tertiary structures

Sarcin Ricin loop

tRNA

P RNA subdomain

Group I Intron

Ribosome

How do they obtain these structures?Kinetics --- Thermodynamics --- Structure

Only the sequence is needed!

Primary Sequence

(nucleotides amino acids)

Native

RNA

Unfolded

“Mother Folding”

Non-specific binding occurs at low [Me], stabilizes secondary structures Specific binding at higher [Me2+] is involved in tertiary folding transitions.

duplex tRNA P4-P6 domain

2. High occupancy metal sites are observed in crystal structures of tertiary RNAs (often Me2+).

Me2+

“Mg2+ core”

Two classes of cation-RNA interactions1. non-specific binding (counter-ion condensation, Me+ or Me2+ )

+ +

+

+

+

+

+

+

+

+

+

+

+

++++ +

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

Metal requirement: Tertiary RNAs typically require divalent cations to fold.

P15.1

G U U C U U A A C GU U C G GGUAAUC

G

A

A A A C C CA A A U

UUU

GGUAGGG

GAAC CU U C U U

AA C G GA

AUUC

AACGG

AGAGAAGG

A C AGA A UG

CUUUCUGU

AGAUAGAUGAUUGCC G C

CUG

A GUA

CG

A GG

UG A U

GAG

CC G

UUU

GCAG

UA

CGA

UGG A A C A

AAACAUGGCUU

ACAGAACGUUAGA

CCACUU

GU

CC

UGCUCGC

ACGG

UGC

UG

AGAUGCCCGUAG

UG U UCGUGC

CU

AG

CGA

AGUC

AUA

A GCUAGG

GCAGUCUUUA

G A GG C U GAC G

GCAGGA

AAAAAGCC

UAC

GUCUUC GG A U A

U G GCU G A G

UAU C C U

U G AAA GU

GCCACA

GU G A C G A A

GU CU C AC U A

GAA

AUGGUGAGAGUGG

AA

CGCGGUAA

ACCCC U C GA G C GA G

CUGCAGAUCUUG A A U C U GU A G

AGGAAA

1

20

40

60

100

120

140

160

200

220

260

280

300

320340

360

380

240

400

80

P1P2

P4

P15

P18

P19

P3

P5

P7

P5.1

P8

P9P10

P11

P10.1P12

Bacillus stearothermophilus Rnase P RNA

Pace and coworkers, PNAS 2005

Catalytic C-domain (~255 nt)

Specificity S-domain (~150 nt)

3.0

4.0

5.0

6.0

fluo

r.

C

D(2

87)

CD

(260

)

1.3

1.4

1.5

1.6

1.7

2.2

2.3

2.4

2.5

Abs (260)

0 . 0 1 0 .1 1

0 .45

0 .50

0 .55

0 .60

M g 2 + ( m M )

Mg2+-induced equilibrium folding of C-domain of P RNA

UIMgK

U I

IeqUi

U2

U1

|

UIMgK

At low [Me2+], non-specific (and specific) binding,

NINMgK

At high [Me2+], energetics of dominated by specific

binding

INMgK

N

Fang, Pan & SosnickBiochemistry, 1999 Mg2+

+n

Limited by Me2+ binding site formation: Defines tertiary structure

Fast, local conformational search

Limiting stepConsolidation of specific

metal binding site

I2k

98%buried

Rg = 38 Å

N100%buried

Rg = 180 Å

0% surface buried

Uurea

≤ 1msec collapse, 2o +some 3o,non-specific and some specific Mg2+

85%buried

Rg = 46 Å

Ieq fast

Rg = 39 Å

I1k

98 %buried

fast

Summary of C-domain folding

Fang, Pan & Sosnick, PNAS, 2002

Structural characterization of intermediates

U I N

?Mg2+ Mg2+

B. subtilis Specificity domain of RNase P RNA

Krasilnikov et al, Nature 2003

KEV1 T1 DEPCV1 DMS

C

CU

P9P8

J12/11

220

100

UG

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

••

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

••

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

••

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

••

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

••

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

C

CU

P9P8

J12/11

220

100

UG

••

A U AA G C U A GGC

C C C G GG G G

A

A A U

U

U U G G

GG

C C

CCU

UU

A

A A

A

•••• •

a GG

Gc CC

C

U

g a GG

Gc CC

C

U

g

A

AA

GG

GGG CC

CC U

U G•

AAAAA

G

GG

G

G

G

C

C

C

U

U

U

U

U

U

U

CC

A

A

A

A

A

G

G

••

AA

A

U

U

U

GG

G

CC

A

A

AA

A

U

U

U

GG

G

CC

A

A

A

AA

AA

G

GGG

G

C

C

C

U

U

U

UU

A

AG

AG

A

A

A

A

G

GC

C

A

G

GG

C

C

U

G

A

C

3’

5’

P10.1

P12

P7 J11/12

P11

P10

140200

86

239

180

160

120

Site-resolved informationfrom chemical and nuclease cleavage

U to I transition

Four-way junction

J11/12 module

I to N transition

Core

TL-receptor

native

Ieq contains J11/12 module & four-way junction

0 40 80 120

0.000

0.005

0.010

0.015

0.020

Rg ~ 30 Å

Experimental SAXS Crystal Structure

P(r

)

r (Å)

P(r) – general shape, from small-angle X-ray scattering

Rg – overall sizeAPS, BioCat beamline

N

Ieq

Rotate both P10.1 and P12 arm

∆Rg ~ 8 Å

Disrupt TL-receptor interaction

∆Rg ~ 2 Å

Rotate P10.1 further

∆Rg ~ 5 Å

With Eric WesthofBaird et al. JMB 2005

Start from the crystal structure…Modeling the intermediate with experimental constraints

(SAXS, Nuclease and chemical mapping)

Ieq N

Intermediate Structure

Role of metal ions in folding cooperativity

Direct mediation of long-range contacts

Indirect mediation –metal binding coupled to large-scale conformational change

U IeqN

S-domain

NIeq

Intermediate Structure (model)

Large molecules light up on EM

• Ribosome – 3 MD

• Proteasome – 750 kD

• Generally accepted lower limit ~200 kD

Glaeser group, UC Berkeley,data from Frank lab, Wadsworth Center

Hu et al, Mol. Microbiology, 2006

But nothing beats a real picture…

Catalytic domain RNase P RNA

Direct imaging of ‘small’ RNAsW. Chiu & S. Ludtke, Baylor

82 kDSide

Top

Front

Start with molecules with known crystal structures to assess feasibility

(blind reconstructions)

Ieq reconstruction

When the intermediate is stably populated it can be

directly imaged!

Native S-domain

I∆25 comparison with reconstruction

Model vrs SAXS & CryEM reconstructions

ModelCryoEM

SAXS

Add an extension to enhance image

Native

Ieq with P9ext

0.01 0.1 1 10

4.2

4.5

4.8

5.1

[MgCl2] (mM)

CD

260

2.6

2.8

3.0

3.2

3.4

CD

278

Folding behavior unchanged

Top view

Front view

Ieq with P9ext

Ieq dimensions: no salt dependence below 1 M NaCl

Why doesn’t flexibility blur the image?

0.01 0.1 1

32

34

36

38

40

42

Rg

(A)

[NaCl] M

Mg2+-native

P10.1

P9

P10.1

P9

P10.1

P9

P10.1

P9

Not just electrostatics holding Ieq in an extended state: Defined thermodynamic well

Structure in the core? All-atomsimulations

RNA structure determination using CryoEM + modeling + all-atom simulations:

A rapid alternative to crystallography?

CGGAUAGGC

UUCUGCAUCCG

U UGAGUAUA

AAAAAGGACG

CCUUGAA

AGUG

CCACAG

UGACGAAG

GCAGUCGGAGAUUUCUGACGG

GA

CCCAUG

GCGCAAG

GUGAU UC CA UC AGA

AAUGGUGAG

UC

GAAUACUGA

AGCGA

UCC

GCGACUUG

UGAU

230

220

210

200

140 130

120 110

100

150

160

170

180

190

90P5

P7

P8

P9

P10P10.1

P11 P12..

.

. .

modelingAll-atom

simulations

Thoughts:

Include “folding” to help restrict the conformational search in prediction

What about folding cooperativity?

Acknowledgments• Tao Pan

– Nathan Baird – Haipeng Gong– Shahnawaz Zaheer

• Wah Chiu, Steve Ludtke (Baylor, CryoEM) • Eric Westhof (Strasbourg, modeling)• Karl Freed (Univ. of Chicago, simulations)

NIH