InriaProjectLabC2S@Exa,annualmeeting, Bordeaux NabilBirgle · 2014. 10. 27. ·...

Post on 13-Oct-2020

0 views 0 download

transcript

A mixed finite element method for deformed cubic meshesInria Project Lab C2S@Exa, annual meeting,

Bordeaux

Nabil Birgle

POMDAPI project-teamInria Paris-Rocquencourt, UPMC

With :Jérôme Jaffré and Martin Vohralík

July 10, 2014

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 1 / 26

Goals

Numerical methodDefine a mixed finite element method for deformed cubes1 pressure per cell1 flux per face

Mixed finite element methods Deformed cube

High performance computingImplementation in Traces (ANDRA)Parallelism and optimization

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 2 / 26

Mixed finite element methods

RTN0 for tetrahedra and cubes (Raviart-Thomas-Nédélec [1])

Tetrahedron Cube

Composite element for hexahedron (Sboui-Jaffré-Roberts [2])

Hexahedron Hexahedron split into 5 tetrahedra

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 3 / 26

Composite mixed finite element method

Composite element with 5 tetrahedra

Assume the faces are planarChoose the splitting

Cube split into 5 tetrahedra

Composite element with 24 tetrahedra

Works with curved facesSingle splittingSymmetryConforming tetrahedral submesh Cube split into 24 tetrahedra

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 4 / 26

Composite mixed finite element method

Incompressible Darcy flowFind u P Hpdiv ; Ωq and p P L2pΩq such that

u “ ´K ∇ p in Ω∇¨u “ f in Ωp “ p0 on BΩ

Weak formulationFind uh P Wh and ph P Mh such that

ż

ΩK´1uh ¨ vh ´

ż

Ωph ∇¨vh “ ´

ż

BΩp0vh ¨ n @vh P Wh

´

ż

Ωqh ∇¨uh “ ´

ż

Ωfqh @qh P Mh

Define the approximation spaces Wh and MhNabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 5 / 26

Composite mixed finite element method

Conditions to meet for the approximation spaces Wh and Mh

uh P Wh and ph P Mh

ph must be constant on each hexahedron E of the mesh Th

∇¨uh must be constant on Euh must be in RTN0 inside the tetrahedral submesh TE of Euh must be uniquely defined by this value on each face F of the mesh

Definition of the approximation spaces Wh and Mh

Mh “ tq P L2pEq : q|E is constant on E ,@E P Thu

Fh is the set of faces of the mesh Th

Wh is defined as a vectorial space with the basis functions wF , F P Fh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 6 / 26

Composite mixed finite element method

Definition of the approximation spaces Wh and Mh

Wh “ Vect twF , F P Fh : wF |E is solution of (PE,F )u

A local problem (PE,F ) is defined to meet the conditions for each wF

The basis function wF will solve the local problem (PE,F ) inside E

The local approximation spaces ĂWE and ĂME

TE is the tetrahedral mesh of EĂWE and ĂME are the mixed finite element spaces

ĂME “ tq P L2pEq : q|T is constant on T ,@T P TEu

ĂWE “ tv P Hpdiv ; Eq : v|T P RTN0pT q,@T P TEu

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 7 / 26

Composite mixed finite element method

The local problem (PE,F) inside the composite element

Find wF P ĂWE and rpF P ĂME such thatż

EK´1wF ¨ rv´

ż

ErpF ∇¨ rv “ 0 @rv P ĂWE

´

ż

Erq ∇¨wF “ ´

ż

E

1|E |rq @rq P ĂME

(PE,F )

Explicit solution with 5 tetrahedra

Neumann boundary conditionnF normal of the face F

wF ¨ nF 1 “

#

1|F | if F “ F 1

0 elseCube split into 24 tetrahedra

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 8 / 26

Composite mixed finite element method with curved faces

Problem with curved facesConstant velocities are not inside the approximation space Wh

Proof (Nordbotten-Hægland [3])F is the union of 4 sub-faces Fi

nF “ nFi on the triangular sub-face Fi

u is a constant velocity

u ¨ nFi ‰ u ¨ nFj

Deformed cube Constant velocity u

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 9 / 26

Composite mixed finite element method with curved faces

Neumann boundary condition with curved facewF |E solves a local problem inside EwF ¨ nF 1 “ 0 if F ‰ F 1

Constant velocity u Approximated velocity uh

The error between u and uh depends on the mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 10 / 26

Composite mixed finite element method with curved faces

Neumann boundary condition with curved faceu ¨ nF is not constant if F is a curved face

u ¨ nFi ‰ u ¨ nFj

Adapt the Neumann boundary condition

wF ¨ nF “1

|F |Deformed cube

nF is the mean of the normal nFi

nF “

ř4i“1 |Fi | nFi

ř4i“1 |Fi | nFi

L2

Neumann boundary condition

wF ¨ nF “nF ¨ nF

ş

F nF ¨ nF

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 11 / 26

Numerical Experiment

Exact solutionConvergence error inside the domain Ω “ r0 ; 1s3 with different meshes.

p “ 2xz ` y2

2 ` z u “ ´

¨

˝

2zy

2x ` 1

˛

RTN0 on tetrahedron Composite RTN0 RTN0 on hexahedron

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 12 / 26

Numerical Experiment

Regular mesh Convergence error on the regular mesh

10−1 10010−3

10−2

10−1

h‖p−

ph‖ L

2

RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 13 / 26

Numerical Experiment

Regular mesh Convergence error on the regular mesh

10−1 10010−3

10−2

10−1

h‖u−

u h‖ L

2

RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 14 / 26

Numerical Experiment

Deformed mesh Convergence error on the deformed mesh

10−1 10010−3

10−2

10−1

100

h‖p−

ph‖ L

2

y = 0.2y = 0.8

RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 15 / 26

Numerical Experiment

Deformed mesh Convergence error on the deformed mesh

10−1 10010−3

10−2

10−1

h‖u−

u h‖ L

2

y = 0.2y = 0.8

RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 16 / 26

Numerical Experiment (Fixed aspect ratio)

Hexahedral mesh Convergence error on the hexahedral mesh

10−1 10010−3

10−2

10−1

100

h‖p−

ph‖ L

2

1.6h

0.4h RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 17 / 26

Numerical Experiment (Fixed aspect ratio)

Hexahedral mesh Convergence error on the hexahedral mesh

10−1 10010−3

10−2

10−1

100

h‖u−

u h‖ L

2

1.6h

0.4h RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 18 / 26

Numerical Experiment (Fixed aspect ratio)

Random mesh Convergence error on the random mesh

10−1 10010−3

10−2

10−1

100

h‖p−

ph‖ L

2

Shift randomlythe vertices˘0.3h

RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 19 / 26

Numerical Experiment (Fixed aspect ratio)

Random mesh Convergence error on the random mesh

10−1 100

10−2

100

h‖u−

u h‖ L

2

Shift randomlythe vertices˘0.3h

RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 20 / 26

Numerical Experiment (Hybrid form - pcg - Traces)

Deformed mesh CPU time to build the linear equation

10−1 100

10−2

100

hcp

utim

e(s

)

32768 hexahedra786432 tetrahedra

RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 21 / 26

Numerical Experiment (Hybrid form - pcg - Traces)

Deformed mesh CPU time to solve the linear equation

10−1 100

10−2

100

102

hcp

utim

e(s

)

32768 hexahedra786432 tetrahedra

RTN0 on tetraedral meshComposite RTN0RTN0 on hexaedral mesh

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 22 / 26

Conclusion

Convergence errorThe convergence is optimal for planar facesIf the curved faces are fixed, the velocity convergesThe composite error is between the two RTN0 errors

Prisms and pyramidsThe same methodology can be apply for prisms and pyramidsLocal and conforming refinement

Projection of the solution into the RTN0 tetrahedral spaceWith rpF in (PE,F ) the pressure is defined on the tetrahedral submeshA posteriori error estimation (Vohralík [4])

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 23 / 26

Traces

Implementation in TracesPut the composite method in Traces (hexahedron, prism, pyramid)Check the matrixCheck the method with basic test cases

PerspectiveBuild a specific test caseStudy the parallelismTry another solverDo a posteriori error estimation

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 24 / 26

References I

Pierre-Arnaud Raviart and Jean-Marie Thomas.A mixed finite element method for 2-nd order elliptic problems.In Mathematical aspects of finite element methods, pages 292–315.Springer, 1977.

Amel Sboui, Jérôme Jaffré, and Jean Roberts.A composite mixed finite element for hexahedral grids.SIAM Journal on Scientific Computing, 31(4) :2623–2645, 2009.

J.M. Nordbotten and H. Hægland.On reproducing uniform flow exactly on general hexahedral cells usingone degree of freedom per surface.Advances in Water Resources, 32(2) :264–267, Feb 2009.

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 25 / 26

References II

Martin Vohralík.Unified primal formulation-based a priori and a posteriori error analysisof mixed finite element methods.Mathematics of Computation, 79(272) :2001–2032, 2010.

Nabil Birgle ( Inria - UPMC ) C2S@Exa, ANDRA July 10, 2014 26 / 26