Intelligent Soil Compaction: Research Update...= b0 + b1*NPp + b2*NPp 2 R2 = 0.96 R2 = 0.72 Average...

Post on 25-Jul-2020

2 views 0 download

transcript

Intelligent Soil Compaction:Research Update

By

David J. White, Ph.D.Mark Thompson, Pavana Vennapusa, Heath Gieselman,

Mike Kruse, Amy Heurung, and Eddy Blahut

Intelligent Compaction Open HouseAkeley, MN

July 20, 2006

Acknowledgements - UPDATE

FHWA Technology Deployment ProgramMnDOTIowa Highway Research BoardCaterpillar, Inc.Center for Transportation Research and Education (CTRE) at Iowa State University

Overview - UPDATE

IntroductionField Project Results:

February 2005; Peoria, ILAugust 2005; Peoria, ILJuly and October/November 2005; TH 14, Janesville, MNJune 2006; Peoria, ILJune, July 2006; TH 64, Akeley, MNJuly 2006; MnROAD, Albertville, MN

Upcoming Work

February 2005

Edwards Arena at Peoria, IL

Caterpillar Prototype Padfoot Roller

Phase 2 Methodology

Construct uniform test strips, varying soil type, moisture content, and lift thickness (23 strips)Compare power to engineering properties of compacted soil over entire compaction curve (e.g. 1, 2, 4, 8 passes)

DensityClegg Impact ValueDCP indexGeoGauge modulusPFWD modulusPlate load test (PLT)

Nuclear Moisture-Density Drive Core Dynamic Cone Penetrometer

Clegg Impact & Portable FWD GeoGauge Plate Load Test

Raw Data Along Strip Length

5 10

Dry

Uni

t Wei

ght (

kN/m

3 )

10

12

14

165 105 10

Net

Pow

er

0

5

10

15

20

25

30

NPpDD

5 10

Location Along Strip (m)

5 10

Pass1

Pass2

Pass4

Pass8

Pass0

Kickapoo Silt (Strip 1)

Average Clegg Impact Value

2 3 4 5 6Av

erag

e N

et P

ower

0

5

10

15

20

25NPp = -12.96*CIV + 64.72

R2 = 0.845

Average DCP Index (mm/blow)

0 50 100 150 200

Aver

age

Net

Pow

er

0

5

10

15

20

25NPp = 0.15*DCPI - 6.55R2 = 0.975

Average Dry Unit Weight (kN/m3)

8 10 12 14 16 18

Aver

age

Net

Pow

er

0

5

10

15

20

25NPp = -3.62*γd + 63.10

R2 = 0.996

CleggDCP Index

Kickapoo Silt (Strip 1)

Dry Density

Relationships for single test strip using averaged data (1 point per roller pass)

High R2 values, but generally only 4 points and identical soil conditions

Linear Regression Analysis

So how about combining data from test strips of varying moisture content, lift thickness, and cohesive soil type?

Average Net Power

0 5 10 15 20 25Av

erag

e E G

G (M

Pa)

0

20

40

60

80

R2 = 0.72

Average Net Power

0 5 10 15 20 25

Aver

age

DC

P In

dex

(mm

/blo

w)

0

50

100

150

200

R2 = 0.67

Average Net Power

0 5 10 15 20 25

Aver

age

Cle

gg Im

pact

Val

ue

0

3

6

9

12

15

R2 = 0.66

Average Net Power

0 5 10 15 20 25Ave

rage

Dry

Uni

t Wei

ght (

kN/m

3 )

10

12

14

16

18

20

R2 = 0.73

Clegg

DCP Index

GeoGauge

Dry Density

Kickapoo Silt (30-cm lift) – data from 3 strips

Multiple Linear Regression Analysis

Based on laboratory Proctor data, quadratic “compaction model” developed for relating net power to density, strength, and stiffness

wEb wEb wb wb Eb Eb b 265

243

2210d ⋅+⋅⋅+⋅+⋅+⋅+⋅+=γ

Moisture Content (%)

5 8 11 14 17 20

Dry

Uni

t Wei

ght (

kN/m

3 )

16

17

18

19

20

21

Iowa tillR2 = 0.96

Moisture Content (%)

5 8 11 14 17 20

Dry

Uni

t Wei

ght (

kN/m

3 )

16

17

18

19

20

21Edwards tillR2 = 0.94

Moisture Content (%)

10 13 16 19 22 25

Dry

Uni

t Wei

ght (

kN/m

3 )

14

15

16

17

18

19

LoessR2 = 0.93

Moisture Content (%)

8 11 14 17 20 23D

ry U

nit W

eigh

t (kN

/m3 )

15

16

17

18

19

20

ShaleR2 = 0.95

Model verification: laboratory data (points) and model predictions (lines)

Average Net Power

0 5 10 15 20 25Av

erag

e E G

G (M

Pa)

0

20

40

60

80EGG = b0 + b1*NPp + b2*NPp2

R2 = 0.96

R2 = 0.72

Average Net Power

0 5 10 15 20 25

Aver

age

Cle

gg Im

pact

Val

ue

0

3

6

9

12

15CIV = b0 + b1*NPp + b2*w + b3*NPp*wR2 = 0.98

R2 = 0.66

Average Net Power

0 5 10 15 20 25

Aver

age

DC

P In

dex

(mm

/blo

w)

0

50

100

150

200DCPI = b0 + b1*NPp + b2*wR2 = 0.93

R2 = 0.67

Average Net Power

0 5 10 15 20 25Aver

age

Dry

Uni

t Wei

ght (

kN/m

3 )

10

12

14

16

18

20γd = b0 + b1*NPp + b2*wR2 = 0.93

R2 = 0.73

Clegg

DCP Index

GeoGauge

Dry Density

Kickapoo Silt (30-cm lift) – data from 3 strips

August 2005

Peoria, IL

Caterpillar Prototype Smooth Drum Roller

RAPCA6-C

CA5FA6 CA6-G

Five base materials (IL DOT classifications)

Roller-Generated Data on Base MaterialsN

et P

ower

(kJ/

s)

0

10

20

30

0 4 8 12

CM

V

0

10

20

30

0 4 8 12 0 4 8 12 0 4 8 12

Roller Pass

0 4 8 12

RAP CA5-CCA6-C FA6 CA6-G

w = 8% w = 4% w = 4% w = 6% w = 8%

Power and CMV compaction curves for 5 stripsAll passes @ amplitude = 2.0 mm

Average Net Power (kJ/s)

10A

vera

ge C

MV

0

5

10

15

20

25

CMV = 34.08 - 12.10 log Pn

R2 = 0.97

305

Average Net Power (kJ/s)

10

Ave

rage

CM

V

0

5

10

15

20

25

CMV = 33.89 - 9.97 log Pn

R2 = 0.92

305

Average Net Power (kJ/s)

10

Ave

rage

CM

V

0

5

10

15

20

25

R2 = 0.84CMV = 65.84 - 21.37 log Pn

305Average Net Power (kJ/s)

10

Ave

rage

CM

V

0

5

10

15

20

25CMV = 47.20 - 15.37 log Pn

R2 = 0.96

305

FA6

CA5-C

CA6-G

CA6-C

CMV and Machine Power for Base Materials

Average CMV

0 5 10 15 20 25

Ave

rage

Dry

Uni

t Wei

ght (

kN/m

3 )

12

14

16

18

20

Average Net Power (kJ/s)

10

Ave

rage

EPF

WD (M

Pa)

10

20

30

40

50

5 30

Average Net Power (kJ/s)

10

Ave

rage

Dry

Uni

t Wei

ght (

kN/m

3 )

12

14

16

18

20

RAPCA6-CCA5-CFA6CA6-G

5 30

Mod

ulus

Power

Den

sity

Density and Modulus from Power and CMV

CMV

Average CMV

0 5 10 15 20 25A

vera

ge E

PFW

D (M

Pa)

10

20

30

40

50

July and October 2005

TH 14 at Janesville, MN

Mapping Exercises with Caterpillar CS-563

Rutting at Pt 4

1 2

5

3

CBR

0 5 10 15 20

Dep

th (m

m)

0

200

400

600

800

12345

Pt

0-75mm: w = 12%

0-75mm: w = 23%

(Rutting at Pts 1 and 2)

CBR

0 5 10 15 20 25

Dep

th (m

m)

0

200

400

600

800

1234

1

2 43

AMMANN Smooth Drum Roller

Location Along Strip (m)

0 5 10 15 20 25

k B

0

10

20

30

40

50

E LW

D (M

Pa)

-20

180

DC

P In

dex

(mm

/blo

w)

-30

70

Cle

gg Im

pact

Val

ue

-5

55

E PLT

(MPa

)

-20

340

ELWD

DCPCIVEPLT

Strip 1

Strip 1 (subgrade and median)

EPLT (MPa)

0 50 100 150 200

k B

0

10

20

30

40

50

ELWD (MPa)

0 50 100 150 200

k B

0

10

20

30

40

50

kB = 14.94*ln ELWD - 34.93R2 = 0.883

DCP Index (mm/blow)

0 20 40 60 80 100

k B

0

10

20

30

40

50

Clegg Impact Value

0 10 20 30 40

k B

0

10

20

30

40

50

kB = 0.156 EPLT + 2.341R2 = 1

kB = 1.379 CIV+ 1.110R2 = 0.861

kB = 91.16 DCPI -0.503

R2 = 0.614

CIV

DCP Index

Modulus

Modulus

Regressions for field measurements and kB

(Slide courtesy of )

Variable Feedback Control for UniformityC

ompa

ctio

n/So

ilSt

iffne

ss

Number of Passes/Time

Com

pact

ion

Dep

th

kB

20 25 30 35 40

Freq

uenc

y

0

20

40

60

80

100

Pass 3

μ = 30.5σ = 2.87n = 287

Evaluation of Variable Feedback Control

20 25 30 35 40

Freq

uenc

y

0

20

40

60

80

100

Pass 2

μ = 30.3σ = 2.14n = 280

20 25 30 35 40

Freq

uenc

y

0

20

40

60

80

100

Pass 1

μ = 31.7σ = 1.74n = 295

Strip 2 (relatively uniform Class 5)

AMMANN kB Comparison to Test Rolling

Location (m)

0 20 40 60

k B (M

N/m

)

5

10

15

20

25

30

Rut

Dep

th (c

m)

0

2

4

6

8

10

kB

Rut

Strip 6, Track 1

June 2006

Peoria, IL

X Distance (m)

Y D

ista

nce

(m)

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

200-mm lift

510-mm lift

Test point

192 points

Design of spatial testing

Iowa State crew testing with nuke, Clegg, PFWD, DCP

CMVPower

Machine power and CMV distribution plots

Effect of lift thickness on…

CMV

0 5 10 15 200

40

80

120

160

Machine Power (kJ/s)

0 10 20 30 40

Freq

uenc

y

0

40

80

120

160

200 mm lift510 mm

Power

Machine power and CMV – raw data

CMV

0

5

10

15

20

25

30

0 3 6 9 12

0.0 4.3 8.5 12.8 17.1

X Distance (m)

CMV

Y D

ista

nce

(m)

0

5

10

15

20

25

300 5 10 15 20

0.0 4.3 8.5 12.8 17.1

X Distance (m)

Net Power (kJ/s)

Dry Unit Weight (kN/m3)

18 19 20 21 22

Freq

uenc

y

0

10

20

30

40

EPFWD (MPa)

0 10 20 30 400

10

20

30

40

Mean DCP Index (mm/blow)

10 20 30 40 50

Freq

uenc

y

0

10

20

30

40

Clegg Impact Value

0 2 4 6 80

10

20

30

40

ModulusDensity

CIVDCP Index

Distribution plots of field measurements

Moisture

Moisture and density – kriged surfaces (192 points)

Density

7.0 7.5 8.0 8.5 9.0

X Distance (m)

Y D

ista

nce

(m)

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

19.0 19.5 20.0 20.5 21.0

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

(a)

Dry Density(kN/m3)

Moisture

Moisture and CIV – kriged surfaces (192 points)

Clegg Impact Value

7.0 7.5 8.0 8.5 9.0

X Distance (m)

Y D

ista

nce

(m)

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

2 4 6 7 8

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

CleggImpact Value

Moisture

Moisture and modulus – kriged surfaces (192 points)

Modulus

7.0 7.5 8.0 8.5 9.0

X Distance (m)

Y D

ista

nce

(m)

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

10 13 16 19 22

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

Modulus(MPa)

Moisture

Moisture and DCP index – kriged surfaces (192 points)

Mean DCP Index

7.0 7.5 8.0 8.5 9.0

X Distance (m)

Y D

ista

nce

(m)

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

10 20 30 40 50

0

5

10

15

20

25

30

4.3 8.5 12.8 17.10.0

DCP Index(mm/blow)

June 2006

TH 64 at Akeley, MN

Caterpillar CS-563 Smooth Drum Roller

Effect of confining pressure on sand density

110 120

Dep

th (m

m)

0

100

200

300

STA 250

110 120

STA 252

110 120

STA 254

Dry Density (pcf)

110 120

STA 256

110 120

STA 258

110 120

STA 260

250 252 254 256 258 260

Cle

gg Im

pact

Val

ue

0

5

10

15

20

Surface175 mm

Station

250 252 254 256 258 260

E PFW

D (M

Pa)

0

20

40

60

80

Effect of confining pressure on sand stability

Overcompaction?

0 3 6 9 12 15 18

Dry

Uni

t Wei

ght (

kN/m

3 )

16

17

18

19

0 3 6 9 12 15 18

DC

P In

dex

(mm

/blo

w)

10

20

30

40

Roller Pass

0 3 6 9 12 15 18

EP

FWD (M

Pa)

10

20

30

40

Overcompaction?

Who’s actually compacting the sand?

Upcoming Analysis with TH 64 Data

Regressions using proof testing dataEvaluation of IC machine use (e.g. calibration procedure)Spatial analysis

Spatial relation of various measurementsMultiple scales

Implementation of GIS for IC data management

July 2006

MnROAD at Albertville, MN

Roller Pass

0 2 4 6 8E

PFW

D (M

Pa)

0

10

20

30

40

Roller Pass

0 2 4 6 8

Dry

Uni

t Wei

ght (

kN/m

3 )

8

11

14

17

20

Roller Pass

0 2 4 6 8

CM

V

0

5

10

15

20

Roller Pass

0 2 4 6 8

Net

Pow

er (k

J/s)

3

6

9

12

15

Density

CMV

Modulus

Power

Compaction curves for two strips at two amplitudes

2.0 mm0.8 mm

Net Power (kJ/s)

3 6 9 12 15

Dry

Uni

t Wei

ght (

kN/m

3 )

10

12

14

16

18

γd = b0 + b1*Pn+b2*ampR2 = 0.98

Mod

ulus

Power

Den

sity

Density and Modulus from Power and CMV

CMV

Net Power (kJ/s)

3 6 9 12 15

EP

FWD (M

Pa)

0

10

20

30

40E = b0 + b1*Pn+b2*amp

R2 = 0.93

CMV

3 6 9 12 1510

12

14

16

18

γd = b0 + b1*CMV+b2*wR2 = 0.85

CMV

3 6 9 12 150

10

20

30

40E = b0 + b1*CMV+b2*wR2 = 0.95

Upcoming Analysis with MnROAD Data

Amplitude studies (mapping and test strips)Variable soil conditions

Lift thicknessMoisture contentSoil type (subgrade and base materials)

Comparison of machines and IC outputCaterpillarBOMAGAMMANN

Resilient Modulus Testing

• TASK 1:– Relationship between Moisture-Density and

Mr• Task 2:

– Relationship between In-situ Modulus (from LWD and Roller predicted values) and Mr

• Task 3:– Relationship between laboratory compaction

methods and Mr

Task 1 – Test ResultsBorrow Material - Std Proctor

1500

1550

1600

1650

1700

1750

0 5 10 15 20 25

Moisture Content (%)

Dry

Dens

ity (k

g/m

^3)

0

20

40

60

80

100

120

140

Resi

lient

Mod

ulus

(Mpa

)

εp = 0.016%

εp = 0.3%

εp = 1.26%

εp = 0.79%

εp = 8.0%

SampleFailure

Task 1 – Test Results contd..

Borrow Material - Mod Proctor

1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

2000

0 5 10 15 20 25

Moisture Content (%)

Dry

Den

sity

(kg/

m^3

)

0

50

100

150

200

250

Res

ilien

t Mod

ulus

(MP

a)

εp = 0.02%

εp = 0.006%

εp = 0.034%

εp = 0.73%εp = 13.3%

SampleFailure

Moisture Content Vs. Mr

y = -11.217x + 261.81R2 = 0.7277

y = -7.3779x + 158.31R2 = 0.7718

0

50

100

150

200

250

0 5 10 15 20 25

Moisture Content (%)

Res

ilien

t Mod

ulus

(MPa

)

High MrLow MrLinear (High Mr)Linear (Low Mr)

``

Strong Influence on Mr !!!

Relationships

• Moisture Content - highest influence on Resilient Modulus

• Non-linear regression model between Moisture Content – Density – Soil Index Properties and Resilient Modulus for a range of Subgrade Soils and Base Materials.

Task 2Prima/Zorno LWD In-situ Modulus and Roller Data

VsLaboratory Resilient Modulus

- Perform LWD tests on subgrade materials- Obtain Shelby Tube samples at the location of LWD

tests and perform Lab Mr.- Prepare re-constituted samples at target In-situ

Moisture and Density at the locations of LWD tests

LWD Spot Tests Mn DOT Drill Rig DCP Test Shelby Core

“Undisturbed” Samples

Need more data !!!

Comparison - Zorno LWD Vs. Mr

y = 0.7644x - 42.377R2 = 0.8169

y = 1.6804x - 49.036R2 = 0.7375

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

Resilient Modulus, Mr (MPa)

LWD

Mod

ulus

, E (M

Pa)

High Mr

Low Mr

Linear (High Mr)

Linear (Low Mr)

Need More Data for Better Relationships !!!

Comparison - Prima LWD Vs. Mr

y = 0.563x - 19.033R2 = 0.6915

y = 1.49x - 36.696R2 = 0.922

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

Resilient Modulus, Mr (MPa)

LWD

Mod

ulus

, E (M

Pa)

High Mr

Low MrLinear (High Mr)

Linear (Low Mr)

Need More Data for Better Relationships !!!

Task 3

Laboratory Compaction Methods.. And its Influence on:

• Roller Compaction Data• Resilient Modulus

GIS Database

• Task 1:– Create spatial maps using Roller Data

• Task 2:– Results of all spot tests as a geographic

database• Task 3:

– Spatial analysis of spot tests from TH 64 over Class 6 base layer – Comparison to Roller Spatial Data

IC Research Projects at Iowa State University

FHWA/IHRB (Phase 1 completed, Phase 2 just completed)

http://www.ctre.iastate.edu/reports/tr495.pdfCaterpillar IC Evaluation (ending Fall 2006)Minnesota DOT IC Evaluation (ending Spring 2006)NCHRP 21-09 (just started, ending 2008)

Our plans for 2006 and 2007...Our plans for 2006 and 2007...

……on the roadon the road

Thank you

David J. White, Ph.D.

djwhite@iastate.edu