LAMA - astro.ubc.ca

Post on 13-Apr-2022

2 views 0 download

transcript

LAMA

LAMA

LAMA

Large Astronomical Mercury-Mirror Array

Paul Hickson University of British ColumbiaKen Lanzetta SUNY Stony BrookRick Puetter UC San DiegoGene Sprouse SUNY Stony BrookAmos Yahil SUNY Stony Brook

Photo Credit: S. Radford.

LAMA

Very Large Optical Telescope Concepts

“Continued progress in optical astronomy requires a telescope of aperture and resolution significantly larger than that of present instruments” – Next Generation CFHT CommitteeAperture in the range 30-100 meters is needed

Major Optical Telescope Projects/Proposals

2012?~ 1000 M$~ 50 mMAXAT

2007~ 800 M$8 m (space)NGST

2015+> 1000 M$~ 100 mOWL

2010?~ 600 M$~ 30 mCELT

First LightCostApertureProject

LAMA

Primary Science Goals

Detect and study the first luminous systemsStudy the process of galaxy formation and evolution from redshift z ~ 20 to the presentDetermine the star formation history of the UniverseDetermine the cosmological parametersResolve the innermost regions of AGN and QSOsDetect and study the oldest and faintest stars

LAMA

Observing Galaxy Formation

Photo Credit:NASA.

LAMA

Finding The First Galaxies

Wavelength range 0.4 < ? < 2.5 umLyman-a visible to z = 19.6

LAMA

Early Protogalaxies

Credit: NGST

LAMA

Importance of ResolutionHST 2.4m NGST 8m LAMA 60m

Photo Credit:NASA

LAMA

Early Globular Clusters

Credit: NGST

LAMA

Star-Formation History of the Universe?

Credit: NASA

LAMA

Supernova Detection

-2

-1

0

1

2

3

0 2 4 6 8 10 12 14

z

log

Fv (

nJy)

LAMA 2um 300s flux limitType II, k = 0, lambda = 0Type II, k = 0, lambda = 1

LAMA

Object Counts (per square arcmin)

0.4z > 10173Strong Gravitational lenses

45 < z < 1074z < 578Active Galactic Nuclei

10.5Supernovae II per year0.3z > 1055 < z < 1051z < 557Lyman-a emitters (R = 100)

202z > 10778675 < z < 101757708z < 52628781Galaxies1 (KAB = 31.4)10 (KAB = 28.9)Flux (nJy)

LAMA

Performance Goals

0.4 – 2.5 um wavelength range< 0.1 nJy detection limit for point sources< 1 nJy detection limit for galaxiesMilliarcsec resolution~ 100 square arcmin survey area:

> 105 galaxies~ 100 supernovae per year

LAMA

Emerging Technologies

Adaptive OpticsOptical interferometry Large mercury mirrorsNear-zenith tracking opticsOH absorption cellLarge VIS/NIR arrays

LAMA

Adaptive Optics FWHM = 0.08 arcsec

FWHM = 0.8 arcsec

Credit: Gemini Project

LAMA

Adaptive Optics Performance

Distance from Guide Star (arcsec)Credit: Matt Mountain

LAMA

Image Intensity

00.10.20.30.40.50.60.70.80.9

1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

wavelength (um)

Rel

ativ

e V

alue

FWHMStrehlIntensity

LAMA

Optical Interferometry NPOI

LAMA

Optical Interferometry

Frontier technologyPhase closure with independent telescopes has been demonstratedPrototype arrays: I2T, MkIII, IRMAOperational arrays: PTI, IOTA, NPOI, ISI, GI2T, SUSIUpcoming arrays: COAST, VLTI, KeckPhase errors within individual apertures are corrected with adaptive opticsMoving mirrors remove zero-point (piston) phase differencesPhase tracking on light from natural guide starLBT design gives interferometric imaging over 40 arcsec

LAMA

LBT Imaging Interferometer

2 x 8.4 m interferometer22.8 m baselinef/15 phase-combined beamLaser guide-star AO on individual telescopesPhase tracking on natural guide star40 arcsec FOV5 mas resolution in optical80-96% Strehl ratio in interferometric image

LAMA

Liquid-Mirror Telescopes

Three 3m telescopes in operationA 6m nearing completionA 4m project in Chile

Photo Credit: Chip Simons Photography

LAMA

Liquid-Mirror Technology

Strehl RatioS = central intensity/ideal central intensity

S = 0.81 measured in lab tests of 2.5m LM

S ~ 0.5-0.7 estimated for NODO 3m telescope

S ~ exp(-k2σ2)k = 2π/λσ = RMS OPD error

Images courtesy of Dr. E. Borra, Universite Laval

LAMA

Liquid-Mirror Interferometric Testing

Image courtesy of Dr. E. Borra, UniversiteLaval

LAMA

Liquid-Mirror Surface Quality

85 nm RMS error ð S = 0.93 at λ = 2 um

Image courtesy of Dr. E. Borra, Universite Laval

LAMA

Scattered Light

Credit: Dr. E. Borra, Universite Laval

LAMA

Mercury Telescopes NODO

Photo credit: Mark K. Mulrooney

LAMA

LMT Imaging Arp 270

LAMA

LMT Imaging Field Galaxies

LAMA

LMT Imaging Distant Cluster

LAMA

LMT Imaging Cluster Core

LAMA

Large Zenith Telescope

LAMA

6m Primary Mirror Truss

LAMA

LZT Mirror Truss

LAMA

Making the mirror-segment mold

LAMA

LZT Air Bearing

LAMA

LMT Tracking Optics

LAMA

Preliminary Design (Single element)

M1: 10 m f/1.5 parabolicM2: 0.75 m hyperbolicM3: 0.2 m flat2 compensation lenses5 min trackingRMS spot dia < 150 masStrehl ratio > 0.1 @ 2 um

LAMA

Background Light

Credit: Space Telescope Science Institute

LAMA

OH Absorption Cell

NIR sensitivity is directly proportional to backgroundGain of ~ 100 is possibleOH Production: Radiative excitation by Meinel photonsCollisional dexcitation in ~100 usColumn density > 1018 cm-2

Path length ~ 10 mPressure ~ 0.1 TorrLifetime ~ 10 msGas consumption ~ 2 kg/hr O3, 40 g/hr H

23 OOHHO +→+

LAMA

OH Absorption vs Column Density

LAMA

Sample Model Calculation (N = 1018 cm-3)

Before

After

LAMA

Cerro Chanjnantor

5000 m high desert in Northern ChileSite of ALMA millimeter arrayProposed site of Cornell IR telescope and several others

Photo credit: S. Radford

LAMA

Chajnantor Seeing vs Paranal (ESO VLT)

Credit: Cornell University

LAMA

LAMA Concept

Optical-NIR interferometerNear-zenith pointing and trackingSurvey fields around natural guide starsWavefront control on each element (AO)Phase tracking on all beamsDiffraction limit of 60m telescopeEquivalent area of 42m telescopeFully sample isoplanatic areaBackground reduction by gas-phase OH absorption cells0.1 nJ point source sensitivity (AB = 33.9)Mercury primary mirrorsHigh dry site (eg. Alto-Plano)Low project cost (~ $50M)

LAMA

Array Geometry

|___

____

____

____

____

____

____

____

____

___|

60m

LAMA

Array Transfer Function

LAMA

Single-Element PSF

LAMA

LAMA PSF

LAMA

PSF Profile

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

radius (mas)

Intensity

Encircled Energy

LAMA

Conceptual Design

LAMA

10m Array Element

LAMA

Survey Mode

~ 360 survey fields, each 30 x 30 arcsec~ 150 observations per year for each field

ò100 pJy detection limit for galaxies (0.1”)

10 pJy detection limit for point sources

ò90 square arcmin in one year~ 40,000 sec integration time

LAMA

Summary

A Very-Large Optical Telescope is feasible nowA 60 m optical interferometer would provide unprecedented sensitivity and resolutionGains of an order of magnitude or more over NGST are possiblefor survey-type observationsLiquid-Mirrors provide a way to beat the cost curve by a factor of 10-50Such a telescope could be built on a relatively short timescale (~ 6 yrs)