Laplace Transforms

Post on 24-Dec-2014

2,097 views 14 download

Tags:

description

 

transcript

Laplace Transforms

Nirav B. Vyas

Department of MathematicsAtmiya Institute of Technology and Science

Yogidham, Kalavad roadRajkot - 360005 . Gujarat

N. B. Vyas Laplace Transforms

Laplace Transforms

Definition:

Let f(t) be a function of t defined for all t ≥ 0 then Laplacetransform of f(t) is denoted by L{f(t)} or f(s) and isdefined as

L {f (t)} = f (s) =

∞∫0

e−stf (t) dt

provided the integral exists where s is a parameter ( real orcomplex).

N. B. Vyas Laplace Transforms

Laplace Transforms

NOTATIONS:

The original functions are denoted by lowercase letters suchas f(t), g(t), ...

Laplace transforms by the same letters with bars such asf(s)g(s), ...

N. B. Vyas Laplace Transforms

Linearity of the Laplace Transforms

Theorem 1:

If L {f (t)} = f (s) and L {g (t)} = g (s) then for any constants a and bL {af (t) + bg (t)} = aL {f (t)}+ bL {g (t)}

Corollary 1:

Putting a = 0 and b = 0, we get L[0] = 0

Corollary 2:

Putting b = 0, we get L[af(t)] = aL[f(t)]

Corollary 3:

L [a1f1 (t) + a2f2 (t) + ...+ anfn (t)]

= a1L [f1(t)] + a2L [f2(t)] + ...+ anL [fn(t)]

N. B. Vyas Laplace Transforms

Linearity of the Laplace Transforms

Theorem 1:

If L {f (t)} = f (s) and L {g (t)} = g (s) then for any constants a and bL {af (t) + bg (t)} = aL {f (t)}+ bL {g (t)}

Corollary 1:

Putting a = 0 and b = 0, we get L[0] = 0

Corollary 2:

Putting b = 0, we get L[af(t)] = aL[f(t)]

Corollary 3:

L [a1f1 (t) + a2f2 (t) + ...+ anfn (t)]

= a1L [f1(t)] + a2L [f2(t)] + ...+ anL [fn(t)]

N. B. Vyas Laplace Transforms

Linearity of the Laplace Transforms

Theorem 1:

If L {f (t)} = f (s) and L {g (t)} = g (s) then for any constants a and bL {af (t) + bg (t)} = aL {f (t)}+ bL {g (t)}

Corollary 1:

Putting a = 0 and b = 0, we get L[0] = 0

Corollary 2:

Putting b = 0, we get L[af(t)] = aL[f(t)]

Corollary 3:

L [a1f1 (t) + a2f2 (t) + ...+ anfn (t)]

= a1L [f1(t)] + a2L [f2(t)] + ...+ anL [fn(t)]

N. B. Vyas Laplace Transforms

Linearity of the Laplace Transforms

Theorem 1:

If L {f (t)} = f (s) and L {g (t)} = g (s) then for any constants a and bL {af (t) + bg (t)} = aL {f (t)}+ bL {g (t)}

Corollary 1:

Putting a = 0 and b = 0, we get L[0] = 0

Corollary 2:

Putting b = 0, we get L[af(t)] = aL[f(t)]

Corollary 3:

L [a1f1 (t) + a2f2 (t) + ...+ anfn (t)]

= a1L [f1(t)] + a2L [f2(t)] + ...+ anL [fn(t)]

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}

2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}

3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}

4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}

5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}

6 L{

cos24t}

7 L{

cos32t}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}

7 L{

cos32t}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Examples

Ex. Find the Laplace transform of the function which is defined as

f(t) =

{t/T 0 < t < T1 when t > T

N. B. Vyas Laplace Transforms

Examples

Ex. Find Laplace transform of f(t) =

{sin t 0 < t < π

0 when t > π

N. B. Vyas Laplace Transforms

Examples

Ex. Find Laplace transform of f(t) where f(t) =

{t 0 < t < 45 when t > 4

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b

=1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)N. B. Vyas Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Partial Fractions

N. B. Vyas Laplace Transforms

Partial Fractions

N. B. Vyas Laplace Transforms

Partial Fractions

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)

2 L−1[

3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]

3 L−1(

s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)

4 L−1(

3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)

5 L−1(

3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)

6 L−1(

3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)

7 L−1(

2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)

2 L−1(

s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)

3 L−1(

4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)

4 L−1(

2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)

5 L−1(

s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)

6 L−1(

s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)

7 L−1(

s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)N. B. Vyas Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Examples of Transformation of Derivatives

Ex. Derive the Laplace transform of sin at and cos at

Ex. Obtain L {tn} from L(1) =1

sEx. Find L(t sin at)

Ex. Find L(t cos at)

N. B. Vyas Laplace Transforms

Examples of Transformation of Derivatives

Ex. Derive the Laplace transform of sin at and cos at

Ex. Obtain L {tn} from L(1) =1

s

Ex. Find L(t sin at)

Ex. Find L(t cos at)

N. B. Vyas Laplace Transforms

Examples of Transformation of Derivatives

Ex. Derive the Laplace transform of sin at and cos at

Ex. Obtain L {tn} from L(1) =1

sEx. Find L(t sin at)

Ex. Find L(t cos at)

N. B. Vyas Laplace Transforms

Examples of Transformation of Derivatives

Ex. Derive the Laplace transform of sin at and cos at

Ex. Obtain L {tn} from L(1) =1

sEx. Find L(t sin at)

Ex. Find L(t cos at)

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t)

and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}

∴1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}

∴ L−1{

1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Examples of Transformation of Integrals

Ex. Prove that: L−1(

1

s2 + 1

)= sin t

Ex. Prove that: L−1(

1

s(s2 + 1)

)= 1− cos t

Ex. Find inverse Laplace transform of1

s3(s2 + a2)

N. B. Vyas Laplace Transforms

Multiplication by tn

Thm: If L [f(t)] = f(s) then L {tnf(t)} = (−1)ndn

dsn[f(s)

]

if L {tf(t)} = (−1)1d

ds

(f(s)

)then L−1

{f ′(s)

}= −tf(t)

N. B. Vyas Laplace Transforms

Multiplication by tn

Thm: If L [f(t)] = f(s) then L {tnf(t)} = (−1)ndn

dsn[f(s)

]if L {tf(t)} = (−1)1

d

ds

(f(s)

)then L−1

{f ′(s)

}= −tf(t)

N. B. Vyas Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}

2 L{t3e−3t

}3 L {tcos at}4 L

{tsin2t

}5 L

{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}

3 L {tcos at}4 L

{tsin2t

}5 L

{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}3 L {tcos at}

4 L{tsin2t

}5 L

{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}3 L {tcos at}4 L

{tsin2t

}

5 L{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}3 L {tcos at}4 L

{tsin2t

}5 L

{te2tcos 3t

}

6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}3 L {tcos at}4 L

{tsin2t

}5 L

{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Division by t

Thm: If L [f(t)] = f(s) then L

{1

tf(t)

}=

∫ ∞s

f(s) provided the

integral exists.

N. B. Vyas Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}

2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}

3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}

4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}

5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}

6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}

7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}N. B. Vyas Laplace Transforms

Examples of infinite integral using Laplace Transform

1 Find

∫ ∞0

te−2tsin t dt

2 Find

∫ ∞0

sinmt

tdt

3 Find

∫ ∞0

e−t − e−3t

tdt

4 Find

∫ ∞0

e−tsin2 t

tdt

N. B. Vyas Laplace Transforms

Examples of infinite integral using Laplace Transform

1 Find

∫ ∞0

te−2tsin t dt

2 Find

∫ ∞0

sinmt

tdt

3 Find

∫ ∞0

e−t − e−3t

tdt

4 Find

∫ ∞0

e−tsin2 t

tdt

N. B. Vyas Laplace Transforms

Examples of infinite integral using Laplace Transform

1 Find

∫ ∞0

te−2tsin t dt

2 Find

∫ ∞0

sinmt

tdt

3 Find

∫ ∞0

e−t − e−3t

tdt

4 Find

∫ ∞0

e−tsin2 t

tdt

N. B. Vyas Laplace Transforms

Examples of infinite integral using Laplace Transform

1 Find

∫ ∞0

te−2tsin t dt

2 Find

∫ ∞0

sinmt

tdt

3 Find

∫ ∞0

e−t − e−3t

tdt

4 Find

∫ ∞0

e−tsin2 t

tdt

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform

1 L−1(

s

(s2 + a2)2

)

2 L−1(cot−1

s

a

)3 L−1

(log

(s+ 1

s− 1

))

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform

1 L−1(

s

(s2 + a2)2

)2 L−1

(cot−1

s

a

)

3 L−1(log

(s+ 1

s− 1

))

N. B. Vyas Laplace Transforms

Examples of Inverse Laplace Transform

1 L−1(

s

(s2 + a2)2

)2 L−1

(cot−1

s

a

)3 L−1

(log

(s+ 1

s− 1

))

N. B. Vyas Laplace Transforms

Convolution

Defn:Convolution of function f(t) and g(t) is denoted f(t) ∗ g(t) and

defined as f(t) ∗ g(t) =

∫ t

0f(u)g(t− u) du

Theorem: Convolution theorem

If L−1{f(s)

}= f(t) and L−1 {g(s)} = g(t) then

L−1(f(s)g(s)

)=

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Convolution

Defn:Convolution of function f(t) and g(t) is denoted f(t) ∗ g(t) and

defined as f(t) ∗ g(t) =

∫ t

0f(u)g(t− u) du

Theorem: Convolution theorem

If L−1{f(s)

}= f(t) and L−1 {g(s)} = g(t) then

L−1(f(s)g(s)

)=

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Convolution

=

∫ ∞0

e−suf(u)g(s)du

= g(s)

∫ ∞0

e−suf(u)du

∴ L(φ(t)) = g(s)f(s)

L−1{g(s)f(s)

}= φ(t) =

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Convolution

=

∫ ∞0

e−suf(u)g(s)du

= g(s)

∫ ∞0

e−suf(u)du

∴ L(φ(t)) = g(s)f(s)

L−1{g(s)f(s)

}= φ(t) =

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Convolution

=

∫ ∞0

e−suf(u)g(s)du

= g(s)

∫ ∞0

e−suf(u)du

∴ L(φ(t)) = g(s)f(s)

L−1{g(s)f(s)

}= φ(t) =

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Convolution

=

∫ ∞0

e−suf(u)g(s)du

= g(s)

∫ ∞0

e−suf(u)du

∴ L(φ(t)) = g(s)f(s)

L−1{g(s)f(s)

}= φ(t) =

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Examples of Convolution theorem

Apply convolution theorem to evaluate:

Ex. L−1{

1

s2(s− 1)

}

Ex. L−1{

s

(s2 + 4)2

}Ex. L−1

{1

(s+ a)(s+ b)

}Ex. L−1

{1

s(s2 + 4)

}

N. B. Vyas Laplace Transforms

Examples of Convolution theorem

Apply convolution theorem to evaluate:

Ex. L−1{

1

s2(s− 1)

}Ex. L−1

{s

(s2 + 4)2

}

Ex. L−1{

1

(s+ a)(s+ b)

}Ex. L−1

{1

s(s2 + 4)

}

N. B. Vyas Laplace Transforms

Examples of Convolution theorem

Apply convolution theorem to evaluate:

Ex. L−1{

1

s2(s− 1)

}Ex. L−1

{s

(s2 + 4)2

}Ex. L−1

{1

(s+ a)(s+ b)

}

Ex. L−1{

1

s(s2 + 4)

}

N. B. Vyas Laplace Transforms

Examples of Convolution theorem

Apply convolution theorem to evaluate:

Ex. L−1{

1

s2(s− 1)

}Ex. L−1

{s

(s2 + 4)2

}Ex. L−1

{1

(s+ a)(s+ b)

}Ex. L−1

{1

s(s2 + 4)

}

N. B. Vyas Laplace Transforms

Application to Differential Equations

Ex. Use transform method to solve y′′ + 3y′ + 2y = et, y(0) = 1 ,y′(0) = 0

Ex. Solve the equation x′′ + 2x′ + 5x = e−t sin t, x(0) = 0 , x′(0) = 1

N. B. Vyas Laplace Transforms

Application to Differential Equations

Ex. Use transform method to solve y′′ + 3y′ + 2y = et, y(0) = 1 ,y′(0) = 0

Ex. Solve the equation x′′ + 2x′ + 5x = e−t sin t, x(0) = 0 , x′(0) = 1

N. B. Vyas Laplace Transforms

Laplace transform of Periodic function

If f(t) is sectionally continuous function over aninterval of length p (0 ≤ t ≤ p) and f(t) is aperiodic function with period p (p > 0), that isf(t+ p) = f(t), then its Laplace transform existsand

L{f(t)} =1

1− e−ps

∫ p

0

e−stf(t)dt, (s > 0)

N. B. Vyas Laplace Transforms

Laplace transform of Periodic function

Periodic Square Wave

Ex. Find the Laplace transform of the square wavefunction of period 2a defined as

f(t) =

{k if 0 ≤ t < a−k if a < t ≤ 2a

N. B. Vyas Laplace Transforms

Laplace transform of Periodic function

Periodic Triangular Wave

Ex. Find the Laplace transform of periodic function

f(t) =

{t if 0 < t < a2a− t if a < t < 2a

with period 2a

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

The Heaviside step function, or the unit stepfunction, usually denoted by H (but sometimes uor θ), is a discontinuous function whose value iszero for negative argument and one for positiveargument.

The function is used in the mathematics of controltheory, signal processing, structural mechanics,etc..

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

The Heaviside step function, or the unit stepfunction, usually denoted by H (but sometimes uor θ), is a discontinuous function whose value iszero for negative argument and one for positiveargument.

The function is used in the mathematics of controltheory, signal processing, structural mechanics,etc..

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

It is denoted by ua(t) or u(t− a) or H(t− a) and

is defined as H(t− a) =

{0 t < a1 t ≥ a

In particular, when a = 0

H(t) =

{0 t < 01 t ≥ 0

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

It is denoted by ua(t) or u(t− a) or H(t− a) and

is defined as H(t− a) =

{0 t < a1 t ≥ a

In particular, when a = 0

H(t) =

{0 t < 01 t ≥ 0

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Second Shifting Theorem

Second Shifting Theorem:If L{f(t)} = f(s), then L{f(t− a)u(t− a)} = e−asf(s)

∴ L−1[e−asf(s)] = f(t− a)u(t− a)

Corollary: L{f(t)H(t− a)} = e−asL{f(t+ a)}

Corollary: L{H(t− a)−H(t− b)} =e−as − e−bs

sCorollary:L{f(t) [H(t− a)−H(t− b)]} = e−asL{f(t+a)}−e−bsL{f(t+b)}

N. B. Vyas Laplace Transforms

Second Shifting Theorem

Second Shifting Theorem:If L{f(t)} = f(s), then L{f(t− a)u(t− a)} = e−asf(s)∴ L−1[e−asf(s)] = f(t− a)u(t− a)

Corollary: L{f(t)H(t− a)} = e−asL{f(t+ a)}

Corollary: L{H(t− a)−H(t− b)} =e−as − e−bs

sCorollary:L{f(t) [H(t− a)−H(t− b)]} = e−asL{f(t+a)}−e−bsL{f(t+b)}

N. B. Vyas Laplace Transforms

Second Shifting Theorem

Second Shifting Theorem:If L{f(t)} = f(s), then L{f(t− a)u(t− a)} = e−asf(s)∴ L−1[e−asf(s)] = f(t− a)u(t− a)

Corollary: L{f(t)H(t− a)} = e−asL{f(t+ a)}

Corollary: L{H(t− a)−H(t− b)} =e−as − e−bs

s

Corollary:L{f(t) [H(t− a)−H(t− b)]} = e−asL{f(t+a)}−e−bsL{f(t+b)}

N. B. Vyas Laplace Transforms

Second Shifting Theorem

Second Shifting Theorem:If L{f(t)} = f(s), then L{f(t− a)u(t− a)} = e−asf(s)∴ L−1[e−asf(s)] = f(t− a)u(t− a)

Corollary: L{f(t)H(t− a)} = e−asL{f(t+ a)}

Corollary: L{H(t− a)−H(t− b)} =e−as − e−bs

sCorollary:L{f(t) [H(t− a)−H(t− b)]} = e−asL{f(t+a)}−e−bsL{f(t+b)}

N. B. Vyas Laplace Transforms