Latent Dirichlet Allocation

Post on 18-Mar-2016

77 views 0 download

description

Latent Dirichlet Allocation. Presenter: Hsuan-Sheng Chiu. Reference. D. M. Blei, A. Y. Ng and M. I. Jordan, “Latent Dirichlet allocation”, Journal of Machine Learning Research, vol. 3, no. 5, pp. 993-1022, 2003. Outline. Introduction Notation and terminology Latent Dirichlet allocation - PowerPoint PPT Presentation

transcript

1

Latent Dirichlet Allocation

Presenter: Hsuan-Sheng Chiu

2

Reference

• D. M. Blei, A. Y. Ng and M. I. Jordan, “Latent Dirichlet allocation”, Journal of Machine Learning Research, vol. 3, no. 5, pp. 993-1022, 2003.

3

Outline

• Introduction

• Notation and terminology

• Latent Dirichlet allocation

• Relationship with other latent variable models

• Inference and parameter estimation

• Discussion

4

Introduction

• We consider with the problem of modeling text corpora and other collections of discrete data– To find short description of the members a collection

• Significant process in IR– tf-idf scheme (Salton and McGill, 1983)– Latent Semantic Indexing (LSI, Deerwester et al., 1990) – Probabilistic LSI (pLSI, aspect model, Hofmann, 1999)

5

Introduction (cont.)

• Problem of pLSI: – Incomplete: Provide no probabilistic model at the level of docum

ents– The number of parameters in the model grows linear with the siz

e of the corpus– It is not clear how to assign probability to a document outside of t

he training data

• Exchangeability: bag of words

6

Notation and terminology

• A word is the basic unit of discrete data ,from vocabulary indexed by {1,…,V}. The vth word is represented by a V-vector w such that wv = 1 and wu = 0 for u≠v

• A document is a sequence of N words denote by w = (w1,w2,…,wN)

• A corpus is a collection of M documents denoted by D = {w1,w2,…,wM}

7

Latent Dirichlet allocation

• Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus.

• Generative process for each document w in a corpus D:– 1. Choose N ~ Poisson(ξ)– 2. Choose θ ~ Dir(α)– 3. For each of the N words wn

(a) Choose a topic zn ~ Multinomial(θ)

(b) Choose a word wn from p(wn|zn, β), a multinomial probability conditioned on the topic zn

βij is a a element of k×V matrix = p(wj = 1| zi = 1)

8

Latent Dirichlet allocation (cont.)

• Representation of a document generation:

z1 z2 … … zN

w1 w2 … … wNw

N ~ Poisson

θ~ Dir(α) → {z1,z2,…,zk}

β(z) →{w1,w2,…,wn}

9

Latent Dirichlet allocation (cont.)

• Several simplifying assumptions:– 1. The dimensionality k of Dirichlet distribution is known and fixe

d– 2. The word probabilities β is fixed quantity that is to be estimate

d– 3. Document length N is independent of all the other data genera

ting variable θ and z

• A k-dimensional Dirichlet random variable θ can take values in the (k-1)-simplex

111

1

1 ...| 1

k

kk

i i

k

i ip

http://www.answers.com/topic/dirichlet-distribution

10

Latent Dirichlet allocation (cont.)

• Simplex:

The above figures show the graphs for the n-simplexes with n =2 to 7.(from mathworld, http://mathworld.wolfram.com/Simplex.html)

11

Latent Dirichlet allocation (cont.)

• The joint distribution of a topic θ, and a set of N topic z, and a set of N words w:

• Marginal distribution of a document:

• Probability of a corpus:

dzwpzpppN

n znnn

n

w

1

,|||,|

N

nnnn zwpzppp

1

,|||,| wz,,

M

dd

N

n zdndndnd dzwpzppDp

d

dn1 1

,|||,|

12

Latent Dirichlet allocation (cont.)

• There are three levels to LDA representation– αβ are corpus-level parameters– θd are document-level variables

– zdn, wdn are word-level variables

corpus document

Refer to as hierarchical models, conditionally independent hierarchical models and parametric empirical Bayes models

13

Latent Dirichlet allocation (cont.)

• LDA and exchangeability– A finite set of random variables {z1,…,zN} is said exchangeable if the joint

distribution is invariant to permutation (πis a permutation)

– A infinite sequence of random variables is infinitely exchangeable if every finite subsequence is exchangeable

– De Finetti’s representation theorem states that the joint distribution of an infinitely exchangeable sequence of random variables is as if a random parameter were drawn from some distribution and then the random variables in question were independent and identically distributed, conditioned on that parameter

– http://en.wikipedia.org/wiki/De_Finetti's_theorem

NN zzpzzp ,...,,..., 11

14

Latent Dirichlet allocation (cont.)

• In LDA, we assume that words are generated by topics (by fixed conditional distributions) and that those topics are infinitely exchangeable within a document

dzwpzpppN

nnnn zw,

1

||

15

Latent Dirichlet allocation (cont.)

• A continuous mixture of unigrams– By marginalizing over the hidden topic variable z, we can under

stand LDA as a two-level model

• Generative process for a document w– 1. choose θ~ Dir(α)– 2. For each of the N word wn

(a) Choose a word wn from p(wn|θ, β)– Marginal distribution od a document

z

zpzwpwp |,|,|

dwppwpN

nn

1

,||,|

16

Latent Dirichlet allocation (cont.)

• The distribution on the (V-1)-simplex is attained with only k+kV parameters.

17

Relationship with other latent variable models

• Unigram model

• Mixture of unigrams– Each document is generated by first choosing a topic z and then

generating N words independently form conditional multinomial– k-1 parameters

N

nnwpwp

1

z

N

nn zwpzpwp

1

|

18

Relationship with other latent variable models (cont.)

• Probabilistic latent semantic indexing– Attempt to relax the simplifying assumption made in the mixture

of unigrams models– In a sense, it does capture the possibility that a document may c

ontain multiple topics– kv+kM parameters and linear growth in M

z

nn dzpzwpdpwdp ||,

19

Relationship with other latent variable models (cont.)

• Problem of PLSI– There is no natural way to use it to assign probability to a previou

sly unseen document– The linear growth in parameters suggests that the model is pron

e to overfitting and empirically , overfitting is indeed a serious problem

• LDA overcomes both of there problems by treating the topic mixture weights as a k-parameter hidden random variable

• The k+kV parameters in a k-topic LDA model do not grow with the size of the training corpus.

20

Relationship with other latent variable models (cont.)

• A geometric interpretation: three topics and three words

21

Relationship with other latent variable models (cont.)

• The unigram model find a single point on the word simplex and posits that all word in the corpus come from the corresponding distribution.

• The mixture of unigram models posits that for each documents, one of the k points on the word simplex is chosen randomly and all the words of the document are drawn from the distribution

• The pLSI model posits that each word of a training documents comes from a randomly chosen topic. The topics are themselves drawn from a document-specific distribution over topics.

• LDA posits that each word of both the observed and unseen documents is generated by a randomly chosen topic which is drawn from a distribution with a randomly chosen parameter

22

Inference and parameter estimation

• The key inferential problem is that of computing the posteriori distribution of the hidden variable given a document

,|

,|,,,,|,w

wzwzp

pp

dp

N

n

k

i

V

j

wiji

k

iik

i i

k

i i jni w

1 1 11

1

1

1,|

Unfortunately, this distribution is intractable to compute in general.A function which is intractable due to the coupling between θ and β in the summation over latent topics

23

Inference and parameter estimation (cont.)

• The basic idea of convexity-based variational inference is to make use of Jensen’s inequality to obtain an adjustable lower bound on the log likelihood.

• Essentially, one considers a family of lower bounds, indexed by a set of variational parameters.

• A simple way to obtain a tractable family of lower bound is to consider simple modifications of the original graph model in which some of the edges and nodes are removed.

24

Inference and parameter estimation (cont.)

• Drop some edges and the w nodes

N

nnnzqqq

1

||,|, z

,|

,|,,,,|,w

wzwzp

pp

25

Inference and parameter estimation (cont.)

• Variational distribution:– Lower bound on Log-likelihood

– KL between variational posteriori and true posteriori

,|,,|,,log,|,

,|,,log,|,

,|,,|,,,|,log,|,,log,|log

zwzzwzz

zwzz wzw

z

z

qEpEdqpq

dqpqdpp

qq

z

,log,,,,|,,

,,,log,|,,|,log,|,

,,log,|,,|,log,|,,,||,|,

,pE,pEqE

d,p,pqdqq

d,|pqdqq,|pqD

qqq wwzzw

wzzzz

wzzzzwzz

zz

zz

26

Inference and parameter estimation (cont.)

• Finding a tight lower bound on the log likelihood

• Maximizing the lower bound with respect to γand φ is equivalent to minimizing the KL divergence between the variational posterior probability and the true posterior probability

,,||,|,

,|,log,|,,log,|log

,|pqD

qEpEp qq

wzz

zwzw

,,||,|,minarg,,

** ,|pqD wzz

27

Inference and parameter estimation (cont.)

• Expand the lower bound:

|log

|log

,|log

|log

|log

,|,log,|,,log,;,

z

zw

z

zwz

pE

pE

pE

pE

pE

qEpEL

q

q

q

q

q

qq

28

Inference and parameter estimation (cont.)

• Then

N

n

k

inini

k

i

k

j jiii

k

i

k

j j

N

n

k

iij

jnni

N

n

k

i

k

j jini

k

i

k

j jiii

k

i

k

j j

w

L

1 1

11

11

1 1

1 11

11

11

log

1loglog

log

1loglog

,;,

29

Inference and parameter estimation (cont.)

• We can get variational parameters by adding Lagrange multipliers and setting this derivative to zero:

N

n niii

k

j jiivni

1

1exp

30

Inference and parameter estimation (cont.)

• Parameter estimation– Maximize log likelihood of the data:

– Variational inference provide us with a tractable lower bound on the log likelihood, a bound which we can maximize with respect α and β

• Variational EM procedure– 1. (E-step) For each document, find the optimizing values of the

variational parameters {γ, φ}– 2. (M-step) Maximize the result lower bound on the log likelihood

with respect to the model parameters α and β

M

ddp

1

,|log, w

31

Inference and parameter estimation (cont.)

• Smoothed LDA model:

32

Discussion

• LDA is a flexible generative probabilistic model for collection of discrete data.

• Exact inference is intractable for LDA, but any or a large suite of approximate inference algorithms for inference and parameter estimation can be used with the LDA framework.

• LDA is a simple model and is readily extended to continuous data or other non-multinomial data.