Lecture 3: linearizing the HH equations HH system is 4-d, nonlinear. For some insight, linearize...

Post on 12-Jan-2016

214 views 0 download

Tags:

transcript

Lecture 3: linearizing the HH equations

HH system is 4-d, nonlinear. For some insight, linearize around a (subthreshold) resting state.

(Can vary resting voltage V0 by varying constant injected current I0.)

Ref: C Koch, Biophysics of Computation, Ch 10

Full Hodgkin-Huxley model

extNaNaKKLL IVVhmgVVngVVgdtdV

C )()()( 34

Full Hodgkin-Huxley model

extNaNaKKLL IVVhmgVVngVVgdtdV

C )()()( 34

hVhdtdh

VmVmdtdm

VnVndtdn

V hmn )()()()()()(

Full Hodgkin-Huxley model

extNaNaKKLL IVVhmgVVngVVgdtdV

C )()()( 34

hVhdtdh

VmVmdtdm

VnVndtdn

V hmn )()()()()()(

Full Hodgkin-Huxley model

extNaNaKKLL IVVhmgVVngVVgdtdV

C )()()( 34

hVhdtdh

VmVmdtdm

VnVndtdn

V hmn )()()()()()(

4 coupled nonlinear differential equations

Spikes, threshold, subthreshold dynamics

threshold propertyspike

Spikes, threshold, subthreshold dynamics

threshold propertyspike

sub- and suprathresholdregions

Linearizing the current equation:

00003

004

0 ))(()())(()( IVVVhVmgVVVngVVg NaNaKKLL

Equilibrium: V0, I0

Linearizing the current equation:

titiext VVtVIItI

e)(e)( 00

00003

004

0 ))(()())(()( IVVVhVmgVVVngVVg NaNaKKLL

Equilibrium: V0, I0

Small perturbations:

Linearizing the current equation:

titiext VVtVIItI

e)(e)( 00

00003

004

0 ))(()())(()( IVVVhVmgVVVngVVg NaNaKKLL

VVhVmgVnggVCiI NaKL )]()()([ 003

04

Equilibrium: V0, I0

Small perturbations:

Linearizing the current equation:

titiext VVtVIItI

e)(e)( 00

00003

004

0 ))(()())(()( IVVVhVmgVVVngVVg NaNaKKLL

VVhVmgVnggVCiI NaKL )]()()([ 003

04

VV

nVVVng KK ))((4 00

3

Equilibrium: V0, I0

Small perturbations:

Linearizing the current equation:

titiext VVtVIItI

e)(e)( 00

00003

004

0 ))(()())(()( IVVVhVmgVVVngVVg NaNaKKLL

VVhVmgVnggVCiI NaKL )]()()([ 003

04

VV

nVVVng KK ))((4 00

3

VV

hVVVmgV

V

mVVVhVmg NaNaNaNa ))(())(()(3 00

3000

2

Equilibrium: V0, I0

Small perturbations:

Linearized equations for gating variables)()( Vnn

dtdn

Vn VVVnVnn 00 ,)(from with

Linearized equations for gating variables)()( Vnn

dtdn

Vn VVVnVnn 00 ,)(

VdV

dnVnnVn

dt

ndV

dV

dV n

n

)()()( 000

from with

Linearized equations for gating variables)()( Vnn

dtdn

Vn VVVnVnn 00 ,)(

VdV

dnVnnVn

dt

ndV

dV

dV n

n

)()()( 000

VVnndtd

Vn )(1)( 00

from with

Linearized equations for gating variables)()( Vnn

dtdn

Vn VVVnVnn 00 ,)(

VdV

dnVnnVn

dt

ndV

dV

dV n

n

)()()( 000

VVnndtd

Vn )(1)( 00

titi ntnVtV

e)(,e)(

from with

Harmonic time dependence:

Linearized equations for gating variables)()( Vnn

dtdn

Vn VVVnVnn 00 ,)(

VdV

dnVnnVn

dt

ndV

dV

dV n

n

)()()( 000

VVnndtd

Vn )(1)( 00

titi ntnVtV

e)(,e)(

VVnnVi n )(]1)([ 00

from with

Harmonic time dependence:

Linearized equations for gating variables)()( Vnn

dtdn

Vn VVVnVnn 00 ,)(

VdV

dnVnnVn

dt

ndV

dV

dV n

n

)()()( 000

VVnndtd

Vn )(1)( 00

titi ntnVtV

e)(,e)(

1)()(

0

0

ViVn

Vn

n

VVnnVi n )(]1)([ 00

from with

Harmonic time dependence:

solution:

Linearized equations for gating variables)()( Vnn

dtdn

Vn VVVnVnn 00 ,)(

VdV

dnVnnVn

dt

ndV

dV

dV n

n

)()()( 000

VVnndtd

Vn )(1)( 00

titi ntnVtV

e)(,e)(

1)()(

0

0

ViVn

Vn

n

)()](/)(exp[)](/)([)( 000 tVVttVVntdtn nn

t

VVnnVi n )(]1)([ 00

from with

Harmonic time dependence:

solution:

or

So back in current equation

VVi

VnVVVngV

V

nVVVng

nKKKK

1)(

)())((4))((4

0

000

300

3

So back in current equation

VVi

VnVVVngV

V

nVVVng

nKKKK

1)(

)())((4))((4

0

000

300

3

)](exp[11

)(nn VV

Vn

For sigmoidal

So back in current equation

VVi

VnVVVngV

V

nVVVng

nKKKK

1)(

)())((4))((4

0

000

300

3

)](exp[11

)(nn VV

Vn

)](1)[( VnVndV

dnn

For sigmoidal

So back in current equation

VVi

VnVVVngV

V

nVVVng

nKKKK

1)(

)())((4))((4

0

000

300

3

)](exp[11

)(nn VV

Vn

)](1)[( VnVndV

dnn

1)()()](1)[(4

0

0004

ViVVVVnVng

n

KnK

For sigmoidal

So back in current equation

VVi

VnVVVngV

V

nVVVng

nKKKK

1)(

)())((4))((4

0

000

300

3

)](exp[11

)(nn VV

Vn

)](1)[( VnVndV

dnn

1)()()](1)[(4

0

0004

ViVVVVnVng

n

KnK

)()](1[4)(ˆ1)(

ˆ000

4

0, KnKK

n

KactiveK VVVnVngg

ViVg

I

For sigmoidal

like a current

So back in current equation

VVi

VnVVVngV

V

nVVVng

nKKKK

1)(

)())((4))((4

0

000

300

3

)](exp[11

)(nn VV

Vn

)](1)[( VnVndV

dnn

1)()()](1)[(4

0

0004

ViVVVVnVng

n

KnK

)()](1[4)(ˆ1)(

ˆ000

4

0, KnKK

n

KactiveK VVVnVngg

ViVg

I

VgIVi KactiveKn ˆ)1)(( ,0

For sigmoidal

like a current

i.e.

So back in current equation

VVi

VnVVVngV

V

nVVVng

nKKKK

1)(

)())((4))((4

0

000

300

3

)](exp[11

)(nn VV

Vn

)](1)[( VnVndV

dnn

1)()()](1)[(4

0

0004

ViVVVVnVng

n

KnK

)()](1[4)(ˆ1)(

ˆ000

4

0, KnKK

n

KactiveK VVVnVngg

ViVg

I

VgIVi KactiveKn ˆ)1)(( ,0

VIgg

ViactiveK

KK

n

,0

ˆ

1

ˆ

)(

For sigmoidal

like a current

i.e. or

So back in current equation

VVi

VnVVVngV

V

nVVVng

nKKKK

1)(

)())((4))((4

0

000

300

3

)](exp[11

)(nn VV

Vn

)](1)[( VnVndV

dnn

1)()()](1)[(4

0

0004

ViVVVVnVng

n

KnK

)()](1[4)(ˆ1)(

ˆ000

4

0, KnKK

n

KactiveK VVVnVngg

ViVg

I

VgIVi KactiveKn ˆ)1)(( ,0

VIgg

ViactiveK

KK

n

,0

ˆ

1

ˆ

)(

)()](1)[(4

)(

ˆ

)(

0004

00

KnK

n

K

n

VVVnVng

V

g

VL

For sigmoidal

like a current

i.e. or

equation for an RLseries circuit with

Equivalent circuit component

Full linearized equation:

VVi

VhVV

Vi

VmVVVhVmg

Vi

VnVVVnggCiI

h

Nah

m

NamNa

n

KnKL

1)(

))(1)((

1)(

))(1)((31)()(

1)(

))(1)((41)(

0

00

0

0000

3

0

000

4

Full linearized equation:

VVi

VhVV

Vi

VmVVVhVmg

Vi

VnVVVnggCiI

h

Nah

m

NamNa

n

KnKL

1)(

))(1)((

1)(

))(1)((31)()(

1)(

))(1)((41)(

0

00

0

0000

3

0

000

4

VA )(

Full linearized equation:

VVi

VhVV

Vi

VmVVVhVmg

Vi

VnVVVnggCiI

h

Nah

m

NamNa

n

KnKL

1)(

))(1)((

1)(

))(1)((31)()(

1)(

))(1)((41)(

0

00

0

0000

3

0

000

4

VA )( A()= 1/R() = admittance

Full linearized equation:

VVi

VhVV

Vi

VmVVVhVmg

Vi

VnVVVnggCiI

h

Nah

m

NamNa

n

KnKL

1)(

))(1)((

1)(

))(1)((31)()(

1)(

))(1)((41)(

0

00

0

0000

3

0

000

4

VA )( A()= 1/R() = admittance

Equivalent circuit forNa terms:

Impedance() for HH squid neuron

|:)(| R

(=2f)

Impedance() for HH squid neuron

|:)(| R experiment:

(=2f)

Impedance() for HH squid neuron

|:)(| R experiment:

(=2f)Band-pass filtering (like underdampedharmonic oscillator)

Cortical pyramidal cell (model)

(log scale)

Damped oscillations

Responses to different current steps: