Lepton pair production at RHIC and LHC energies Cem Güçlü İstanbul Technical University Physics...

Post on 08-Jan-2018

217 views 0 download

description

September 20, 2012Erice3 Particle production from EM Fields 1.INTRODUCTION 2.FREE LEPTON PAIR PRODUCTION 3.BOUND FREE LEPTON PAIR PRODUCTION 4.ELECTRON-POSITRON PAIR PRODUCTION WITH NUCLEAR DISASSOCIATION 5. LASER ASSISTED PAIR CREATION IN ION-ION COLLISION 6. CONCLUSION

transcript

Erice 1

Lepton pair production at RHIC and LHC energies

Cem Güçlüİstanbul Technical University

Physics Department

September 20, 2012

September 20, 2012 Erice 2

Particle production from EM Fields

* Lepton-pair production

* Beam Lifetime (electron capture)

* Detector background

* Non-perturbative and perturbative approach

* Impact parameter dependence

* Multi-pair production

* Test of QED at high fields

Erice 3September 20, 2012

Particle production from EM Fields1. INTRODUCTION

2. FREE LEPTON PAIR PRODUCTION

3. BOUND FREE LEPTON PAIR PRODUCTION

4. ELECTRON-POSITRON PAIR PRODUCTION WITH NUCLEAR DISASSOCIATION

5. LASER ASSISTED PAIR CREATION IN ION-ION COLLISION

6. CONCLUSION

Erice 4

Central Collision QCD (Quantum Chromo Dynamics)

Peripheral Collision QED (Quantum Electro Dynamics)

b

September 20, 2012

Particle production from EM Fields

September 20, 2012 Erice 5

21 RRb

1Z

2Z

Collisions of Heavy Ions

E

E

September 20, 2012 Erice 6

Collision Parameters :

MeVmcsfrequencieCritical crit 022.12: 2

bctfreqFourierMaximum

1max:.

cmVce

mcEFieldECritical kritik /10)(: 1622

2:b

ZeEFieldEMaximum maksimum

Erice 7

2:b

ZeEFieldEMaximum maksimum

Dependence of the electric radial field strengths for a point chargeon the Lorentz factor γ

September 20, 2012

September 20, 2012 Erice 8

Relativistic Colliders

200 100 120 12 1.6

104

1.2x104 1.2x103 160

107 1.2x107 1.2x106 1.6x105

)(.

max ekrit

)(.

max eEE

krit

)(.

max

krit

)(.

max kritE

E

SPS

RHIC

LHC

4102

7103.2

September 20, 2012 Erice 9

Dirac wave-function of electrons/positrons

A Electromagnetic vector potential

AAF Electromagnetic field tensor

μμν

μν AFF

LLLL

ΨγΨe)Ψmˆ(iΨ μ41

e

InteractMaxwellelectronQED

QED Lagrangian

μAΨγΨe μSemiclassical coupling of electrons to the electromagnetic field

Erice 10September 20, 2012

The four-vector potential in the rest frame of a charge point Z, centered at the coordinates ( 0, b/2, 0 )

2/12220)2/(

,0zbyx

ZeAA

),( 0 AAA

b

İn momentum space:

20

30

04

0

4)2

exp()()2(

)2

exp()(]2[

)()(

qbqiqZe

rerdbqiqZe

xAexdqA

rqi

xiq

September 20, 2012 11Erice

Erice 12September 20, 2012

x

1x

x

1x

Lorentz transform this potential to the moving frame:

0

)()(

00

000

AA

AAAAAAAA

zz

z

]2

.exp[)(

)(8 2222022

0bqi

qqqqqZA

yxz

z

Erice 13September 20, 2012

Equation of motion:

1. We construct a semiclassical action in terms of a time-dependent many electron state )(t

)(:|)()(|:)(4

txxtxdS int0 LL2. We assume that the initial state vector corresponds to a single Slater determinant |0>

0)(

tLimt

statevacuum0

jipqj

pi

q

qqqq

q

,,)()(

)()()()( 1

)()(

)()(

q

k

Ue

Uerqi

q

rkik

Single particle and anti-particle states

Erice 14September 20, 2012

3. We assume the dynamics governing the time evolution of the states is unitery:

10),()( KKKKwheretKt ††

Therefore, the equation of motion can be cast into the form

)()()(

)(

)()()(

),(),()(

0

00

0

xAxAxV

mixH

xVxHxHwhere

ttKittKxH t

Erice 15September 20, 2012

With the above assumptions, all orders processes can be obtained. In particular, thosesolutions which are perturbative in potential can ve expressed as the series

),()(),()(),()(

),()(),()(),(),(

0002

000

KVKVtKddi

KVtKditKtK

t

t

Where in above equation, the lowest-order terms is simply

)(exp),( 00 ttiHttK

Erice 16

Energy diagram of the single-particle Dirac equation and basic atomic processes which occur in ion-atom collisons

September 20, 2012

September 20, 2012 Erice 17

ee

time

Ion 1

Ion 2

Emits photon Emits photonPair Production

Second-order Feynman diagram

September 20, 2012 Erice 18

Direct and exchange diagrams :

September 20, 2012 Erice 19

Total Cross Section of free pair production

):():():():,():():():():,(

12)(

21)(

pTqpFpkFpqkA

pTqpFpkFpqkA

kq

kq

3 3 22( ) ( )

8

1 , : , :4 2

p k q pq k

d kd qd p A k q A k q

September 20, 2012 Erice 20

)()(4):( 222222

22qfqG

qZqF ZE

)()()()(

1)()()(

)1()1(

22):(

qppk

p

uuuu

qkEEEpT

zs

z

s

zzqkspkq

Scalar part of EM Fields in momentum space of moving heavy ions

Erice 21September 20, 2012

)(ln30 CT

Free electron-positron pair production

September 20, 2012 Erice 22

SPS , γ=10, Au + Au , σ=140 barn

RHIC, γ=100, Au + Au , σ=36 kbarn

LHC, γ=3400, Pb + Pb , σ=227 kbarn

)(ln322 PTfreefree ZZ

Erice 23September 20, 2012

23

22

3422

21

2

)()(ln2

121)(

ba

aZZCdbd

bbP C

)(2ln914)( 2

242

2212 Z

bbZZbP ClabC

Two Photon Method :

Equivalent Photon Method:

M. C. Güçlü, Nucl. Phys. A, Vol. 668, 207-217 (2000)

Erice 24September 20, 2012

Erice 25September 20, 2012

Erice 26September 20, 2012

In the bound-free pair-production, theelectron is captured by one of thecolliding ions

and leads to the loss of the (oneelectron) ion from the beam.

eZeZZZ bsaba ,...2/11)(

Electron Capture Process

27EriceSeptember 20, 2012

September 20, 2012 Erice 28

Particle production from EM FieldsBound-free electron – positron pair production)

Distorted wave-functionfor the captured-electron

)(.2

1)( rumi

rnon

HaZr

Hrnon e

aZ /

2/31

September 20, 2012 29Erice

Positron Wave-Function

')(

q

r.qi)(q ueN

September 20, 2012 30Erice

)1(2/

iaeN a

v

Zea2

1ea2N a2

2

' is the distortion (correction term)due to the large charge of the ion.

RESULTS

This work Ref.[7]RHIC Au+Au at 100 GeV 94.5 94.9LHC Pb+Pb at 2957 GeV 202 225

TABLE I: Bound-free pair production cross sections (in barn) for selected collision systems and cross sections as accessible at RHIC and LHC collider facilities.

BFPP

September 20, 2012 31Erice

FIG. 2: BFPP cross sections for two different systems as functions of thenuclear charge Z.

September 20, 2012 32Erice

FIG. 3: BFPP cross sections for two different systems (Au+Au-dashed line andPb+Pb-solid line) as functions of the .

September 20, 2012 33Erice

FIG. 4: The differential cross section as function of the transverse momentum of the produced positrons.

September 20, 2012 34Erice

FIG. 5: The differential cross section as function of the longitudinal momentum of the produced positrons.

September 20, 2012 35Erice

FIG. 6: The differential cross section as function of the energy of the produced positrons .

September 20, 2012 36Erice

Erice 37September 20, 2012

Experiments atCERN Super Proton Synchroton SPS

Erice 38September 20, 2012

eeAuSAuSEnergy = 200 A GeV at fixed target frame

Measured Cross Section for 1-17 MeV /c positron yield

barns85exp with 25% error

barnsQED 98 for 1-17 MeV /c positron

barnsQED 140 For all positron momenta

Vane CR at al. Phys. Rev. A 50:2313 (1994).

Erice 39September 20, 2012

Erice 40September 20, 2012

What about experiments at SOLENOIDAL TRACKER ( STAR ) ?

RHIC: Relativistic Heavy Ion Collider

Energy =100 GeV/nucleon

Au + Au collisions

Circumference = 2.4 miles

September 20, 2012 Erice 41

Nuclear disassociation (Giant Dipole Resonance)

Particle production from EM Fields

Electron-positron pair production (on the left) with a mutual Coulomb excitation (on theright) being mainly giant dipole resonance (GDR). These two processes are independentof each other.

Erice 42September 20, 2012

)()()(2 bPbPbPbd hadronicnoXnXnee

Cross Section of electron-positron pairs

accompanied by nuclear dissociation

Giant Dipole Resonance

eeAuAuAuAu

Erice 43September 20, 2012

)exp(11)(

aRb

b

No hadronic probability, computed with Woods-Saxon nuclear form factor

Erice 44September 20, 2012

2)(bSbPXnXn

23/2222

21

5

2

222

12

1045.5

2

fmAZNZ

mAZNZS

N

Probability of mutual Coulomb nuclear excitation with breakupas a function of impact parameter

G. Baur at al. Nuclear Physics A 729 (2003) 787-808

Erice 45September 20, 2012

z

z

PPPPY

0

0ln21

2/12220 )( PzPPM

2/122 )( yx PP P

Rapidity:

Invariant mass:

Transverse momentum :

15.1Y

MeVMMeV ee 265140

MeVP 65

Kinematic restrictions at STAR experiment

Adams J. At al. Phys. Rev. A 63:031902 (2004)

Erice 46September 20, 2012

Results:

mbbPbPbPbd hadronicnoXnXnee 52.1)()()(2

eeAuAuAuAu

bbPbd ee 32.0)(2

)()(3.0)(2.06.1exp mbsyststat

Erice 47September 20, 2012

LASER ASSISTED PAIR CREATION IN ION-ION COLLISION

eeZZN

nonlinear Bethe-Heitler process

lab frame: ħω ≈ 100 eV , E ≈ 10^12 V/cm

rest frame: ħ ω ' and E' enhanced by 2γ

Carsten Müller

Erice 48September 20, 2012

LASER ASSISTED PAIR CREATION IN ION-ION COLLISION

eeZZZZN

We aim to combine the pair creation in ion-ion collisions with the pair creation in strong laser fields by investigating pair creation in ion-ion collisions occuring in the presence of an intense laser field.

A lepton pair is produced in the Coulomb fields of the heavy-ions ( Z ) with the simultaneous absorption of N photons from the background laser field.

September 20, 2012 Erice 49

FAIR - Facility for Antiproton and Ion Research

Completed in 2018

Cost : 1.2 billion Euro

QEDStrong FieldsIon -Matter Interactions

September 20, 2012 Erice 50

CONCLUSIONS:1. We have obtained free-free and bound-free electron-positron pair production cross section by using the semi-classical two photon method.

2. Our calculations agree well with the other calculations shown at references.

3. We have also obtained cross sections as a function of rapidity, transverse momentum and longitudinal momentum of produced positrons.

4. We can repeat the similar calculation for the FAIR energies.

5. Can we use this method to calculate the production of other particles such as mesons, heavy leptons, may be Higgs particles ?

6. Laser assisted pair creation in ion-ion collisons

REFERENCES:1) C.A. Bertulani and G. Baur, Phys. Rep. 163, 299 (1988).2) A.J. Baltz, M.J. Rhoades-Brown and J. Weneser, Phys. Rev. A 50, 4842

(1994).3) C.A. Bertulani and D. Dolci, Nucl. Phys. A 683, 635(2001).4) J. Eichler and W.E. Meyerhof, Relativistic Atomic Collisions (Academic

Press, California, 1995).5) H. Meier, Z. Halabuka, K. Hencken, D. Trautmann and G. Baur, Phys. Rev. A

63, 032713 (2001).6) Şengül, M. Y., Güçlü, M. C., and Fritzsche, S., 2009, Phys. Rev. A 80,

042711. 7) K. Hencken, G. Baur, D. Trautmann, Phys. Rev. C 69, 054902 (2004).8) M.C. Güçlü, M.Y. Şengül, Progress in Part. and Nucl. Phys. 59, 383 (2007).9) Şengul, M. Y., and Güçlü, M. C., 2011, Phys. Rev. C ,83,014902.10) C. Müller, A. B. Voitkiv and N. Grün, Phys. Rev. A 67, 063407 (2003).

September 20, 2012 Erice 51