Leptonic B-decays at the B factories · Leptonic B-decays at the B factories Lattice QCD Meets...

Post on 07-Oct-2020

1 views 0 download

transcript

Leptonic B-decays at the B factoriesLattice QCD Meets Experiment Workshop

FNAL

M. Bellis1 & C.Cartaro2

for the BaBar collaboration

1Department of PhysicsStanford University

2SLAC National Accelerator Laboratory

April. 26th, 2010

M. Bellis April. 2010 FNAL 1 / 26

Outline

1 Overview

2 The B-factories

3 The measurementsLeptonic decaysRadiative leptonic decaysLepton flavour violation

4 Summary

M. Bellis April. 2010 FNAL 2 / 26

B leptonic decays

A great variety of decays and rare searches.

Leptonic decays

B → τ ν̄B → µν̄B → eν̄

Radiative leptonic decays

B → γ`ν̄

Lepton flavour violating decays

B → ``′

B → K``′

Not a comprehensive list...but some of the most recent/relevant results.

Motivation?

M. Bellis April. 2010 FNAL 3 / 26

B leptonic decays

A great variety of decays and rare searches.

Leptonic decays

B → τ ν̄B → µν̄B → eν̄

Radiative leptonic decays

B → γ`ν̄

Lepton flavour violating decays

B → ``′

B → K``′

Not a comprehensive list...but some of the most recent/relevant results.

Motivation?

M. Bellis April. 2010 FNAL 3 / 26

B leptonic decays

A great variety of decays and rare searches.

Leptonic decays

B → τ ν̄B → µν̄B → eν̄

Radiative leptonic decays

B → γ`ν̄

Lepton flavour violating decays

B → ``′

B → K``′

Not a comprehensive list...but some of the most recent/relevant results.

Motivation?

M. Bellis April. 2010 FNAL 3 / 26

B leptonic decays

A great variety of decays and rare searches.

Leptonic decays

B → τ ν̄B → µν̄B → eν̄

Radiative leptonic decays

B → γ`ν̄

Lepton flavour violating decays

B → ``′

B → K``′

Not a comprehensive list...but some of the most recent/relevant results.

Motivation?

M. Bellis April. 2010 FNAL 3 / 26

Pure leptonic decays

In the Standard Model

Tree level mediated by only Wboson.Helicity suppressed

B → τ ν̄ ≈ 10−4

B → µν̄ ≈ 10−7

B → eν̄ ≈ 10−12

Sensitive to fB , given Vub

Vub and fB dominate SMuncertainty.

B(B → `ν) =G2FmB

8πm2`(1−

m2`

m2B

)2f 2B |Vub|2τB

M. Bellis April. 2010 FNAL 4 / 26

Pure leptonic decays beyond SM

Decay mediated by a Higgs

Charged Higgs contribution is not helicitysuppressed.

Model dependent prediction.

B(B → `ν)2HDM = B(B → `ν)× (1− tan2 βm2

B

m2H

)2

B(B → `ν)SUSY = B(B → `ν)× (1−tan2

1 + η0 tanβ

m2B

m2H

)2

W.S. Hou, Phys.Rev.D., 48 (1993) 2342

Akeroyd,Recksiegel J.Phys.G29:2311-2317, 2003

M. Bellis April. 2010 FNAL 5 / 26

Pure leptonic decays beyond SM

Complex interplay amongst the“unknowns”.

fBQCD

Vub

CKM matrix

New physics

2HDM,SUSY,MSSM,etc.

B(B → `ν̄)

Experimental measurement

M. Bellis April. 2010 FNAL 6 / 26

Pure leptonic decays beyond SM

Complex interplay amongst the“unknowns”.

fBQCD

Vub

CKM matrix

New physics

2HDM,SUSY,MSSM,etc.

B(B → `ν̄)

Experimental measurement

M. Bellis April. 2010 FNAL 6 / 26

Pure leptonic decays beyond SM

Complex interplay amongst the“unknowns”.

fBQCD

Vub

CKM matrix

New physics

2HDM,SUSY,MSSM,etc.

B(B → `ν̄)

Experimental measurement

M. Bellis April. 2010 FNAL 6 / 26

Fit at the SM and beyond

The name of the game is to interpret measurements in a consistent framework.

Tensions...

Vub and sin(2β)fB and B(B → τν)

“Freedom” to choose what values to use.

M. Bellis April. 2010 FNAL 7 / 26

Fit at the SM and beyond

The name of the game is to interpret measurements in a consistent framework.

Tensions...

Vub and sin(2β)fB and B(B → τν)

“Freedom” to choose what values to use.

M. Bellis April. 2010 FNAL 7 / 26

Fit at the SM and beyond

The name of the game is to interpret measurements in a consistent framework.

Tensions...

Vub and sin(2β)fB and B(B → τν)

“Freedom” to choose what values to use.

M. Bellis April. 2010 FNAL 7 / 26

Fit at the SM and beyond

dm∆

τν +τ → +

B

dm∆ and τν +τ →

+Constraint from B

α

βγ

ρ

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

η

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

Summer 08

CKMf i t t e r

M. Bellis April. 2010 FNAL 8 / 26

Fit at the SM and beyond

UTFit Collaboration arXiv:0908.3470

]−4)[10ντ→BR(B

0 0.5 1 1.5 2 2.5 3

]−4

))[1

0ντ

→(B

R(B

σ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

1

2

3

4

5

6 σ

arXiv:0908.3480

M. Bellis April. 2010 FNAL 9 / 26

Lepton flavour universality test

Potentially large violations of LF universality canappear in helicity-suppressed charged-currentmodes within the MSSM.

Large tanβ

Γ(B → µν̄)exp = Γ(B → µν̄µ)+Γ(B → µν̄e)+Γ(B → µν̄τ )

Γ(B → µν̄µ) = SM

Γ(B → µν̄e) ≈ 0

Γ(B → µν̄τ ) ∝ scalar LFV amplitude

Experimental probe

Out of reach of current B-factories.

Rτµ = ΓB→µν̄ΓB→τν̄ Rτe = ΓB→eν̄

ΓB→τν̄

Prediction in non-minimal LFV

Rτµ ∼ 10%Rτµ,SM

Rτe ∼ 103Rτe,SM

G.Isidori, P.Paradisi, Phys.Lett.B 639,499

bR

sL

µR

ν̄τ

H+

M. Bellis April. 2010 FNAL 10 / 26

Lepton flavour universality test

Potentially large violations of LF universality canappear in helicity-suppressed charged-currentmodes within the MSSM.

Large tanβ

Γ(B → µν̄)exp = Γ(B → µν̄µ)+Γ(B → µν̄e)+Γ(B → µν̄τ )

Γ(B → µν̄µ) = SM

Γ(B → µν̄e) ≈ 0

Γ(B → µν̄τ ) ∝ scalar LFV amplitude

Experimental probe

Out of reach of current B-factories.

Rτµ = ΓB→µν̄ΓB→τν̄ Rτe = ΓB→eν̄

ΓB→τν̄

Prediction in non-minimal LFV

Rτµ ∼ 10%Rτµ,SM

Rτe ∼ 103Rτe,SM

G.Isidori, P.Paradisi, Phys.Lett.B 639,499

bR

sL

µR

ν̄τ

H+

M. Bellis April. 2010 FNAL 10 / 26

Lepton flavour universality test

Potentially large violations of LF universality canappear in helicity-suppressed charged-currentmodes within the MSSM.

Large tanβ

Γ(B → µν̄)exp = Γ(B → µν̄µ)+Γ(B → µν̄e)+Γ(B → µν̄τ )

Γ(B → µν̄µ) = SM

Γ(B → µν̄e) ≈ 0

Γ(B → µν̄τ ) ∝ scalar LFV amplitude

Experimental probe

Out of reach of current B-factories.

Rτµ = ΓB→µν̄ΓB→τν̄ Rτe = ΓB→eν̄

ΓB→τν̄

Prediction in non-minimal LFV

Rτµ ∼ 10%Rτµ,SM

Rτe ∼ 103Rτe,SM

G.Isidori, P.Paradisi, Phys.Lett.B 639,499

bR

sL

µR

ν̄τ

H+

M. Bellis April. 2010 FNAL 10 / 26

The B-factories

The B-factories

Belle (KEK)BaBar (SLAC)

Ran on Υ(4S) resonance.

Wealth of rich physics under theresonance (cc̄, τ+τ−, ...)

Wealth of backgrounds under theresonance.

High luminosity

On the order of 1.5 billion BB̄ pairs inthe world’s dataset!

M. Bellis April. 2010 FNAL 11 / 26

The B-factories

The B-factories

Belle (KEK)BaBar (SLAC)

Ran on Υ(4S) resonance.

Wealth of rich physics under theresonance (cc̄, τ+τ−, ...)

Wealth of backgrounds under theresonance.

High luminosity

On the order of 1.5 billion BB̄ pairs inthe world’s dataset!

M. Bellis April. 2010 FNAL 11 / 26

The B-factories

The B-factories

Belle (KEK)BaBar (SLAC)

Ran on Υ(4S) resonance.

Wealth of rich physics under theresonance (cc̄, τ+τ−, ...)

Wealth of backgrounds under theresonance.

High luminosity

On the order of 1.5 billion BB̄ pairs inthe world’s dataset!

M. Bellis April. 2010 FNAL 11 / 26

The B-factories

The B-factories

Belle (KEK)BaBar (SLAC)

Ran on Υ(4S) resonance.

Wealth of rich physics under theresonance (cc̄, τ+τ−, ...)

Wealth of backgrounds under theresonance.

High luminosity

On the order of 1.5 billion BB̄ pairs inthe world’s dataset!

M. Bellis April. 2010 FNAL 11 / 26

The B-factories

The B-factories

Belle (KEK)BaBar (SLAC)

Ran on Υ(4S) resonance.

Wealth of rich physics under theresonance (cc̄, τ+τ−, ...)

Wealth of backgrounds under theresonance.

High luminosity

On the order of 1.5 billion BB̄ pairs inthe world’s dataset!

M. Bellis April. 2010 FNAL 11 / 26

B-factory physics

Colliding e+e− beams

Running on the Υ(4S)resonance.

Decays to BB̄

One B will decay toour signal of interest.The other B decaysin any number ofways.

e− e+

M. Bellis April. 2010 FNAL 12 / 26

B-factory physics

Colliding e+e− beams

Running on the Υ(4S)resonance.

Decays to BB̄

One B will decay toour signal of interest.The other B decaysin any number ofways.

e− e+

B0

B0

M. Bellis April. 2010 FNAL 12 / 26

B-factory physics

Colliding e+e− beams

Running on the Υ(4S)resonance.

Decays to BB̄

One B will decay toour signal of interest.The other B decaysin any number ofways.

e− e+

B0

B0

M. Bellis April. 2010 FNAL 12 / 26

Beam constraints

B mass

Beam energy resolution is better than Benergy (combined track ~p) resolution.

mES =√

14s − (p∗B)2

∆E = E∗B −12

√s

Discriminating power in 2D plane.

Signal process (Monte Carlo)

2B mass GeV/c5.2 5.22 5.24 5.26 5.28 5.3

even

ts/M

eV

0

100

200

300

Entries: 11922

All background processes (Monte Carlo)

2B mass GeV/c5.2 5.22 5.24 5.26 5.28 5.3

even

ts/M

eV

0

20

40

60

80

100

120

140 Entries: 11248

M. Bellis April. 2010 FNAL 13 / 26

Beam constraints

B mass

Beam energy resolution is better than Benergy (combined track ~p) resolution.

mES =√

14s − (p∗B)2

∆E = E∗B −12

√s

Discriminating power in 2D plane.

Signal process (Monte Carlo)

2 GeV/cESM5.2 5.22 5.24 5.26 5.28 5.3

even

ts/M

eV

0

500

1000

1500

2000 Entries: 14328

All background processes (Monte Carlo)

2 GeV/cESM5.2 5.22 5.24 5.26 5.28 5.3

even

ts/M

eV

0

200

400

600 Entries: 47036

M. Bellis April. 2010 FNAL 13 / 26

Beam constraints

B mass

Beam energy resolution is better than Benergy (combined track ~p) resolution.

mES =√

14s − (p∗B)2

∆E = E∗B −12

√s

Discriminating power in 2D plane.

Signal process (Monte Carlo)

E GeV∆-0.2 -0.1 0 0.1 0.2

even

ts/M

eV

0

200

400

600

800

1000

1200

1400 Entries: 14328

All background processes (Monte Carlo)

E GeV∆-0.2 -0.1 0 0.1 0.2

even

ts/M

eV

0

200

400

600

Entries: 47036

M. Bellis April. 2010 FNAL 13 / 26

Beam constraints

B mass

Beam energy resolution is better than Benergy (combined track ~p) resolution.

mES =√

14s − (p∗B)2

∆E = E∗B −12

√s

Discriminating power in 2D plane.

Signal process (Monte Carlo)

2 GeV/c

ESM5.2 5.22 5.24 5.26 5.28 5.3 E GeV∆

-0.2-0.1

00.1

0.2020406080

100120140160180200220

Entries: 14328

All background processes (Monte Carlo)

2 GeV/c

ESM5.2 5.22 5.24 5.26 5.28 5.3 E GeV∆

-0.2-0.1

00.1

0.202468

101214161820

Entries: 47036

M. Bellis April. 2010 FNAL 13 / 26

Tagging methods

Completely reconstruct one B.

Breco or Btag

Search the other B for decays of interest.

Brecoil or Bsig

Two tagging methods:

Hadronic tag

More pure.Less efficient. (∼ 0.2%)∼ 1000 different decay modes!B → D(∗) + π

B → D(∗) + ππ

B → D(∗) + πK

.

.

.

Semileptonic tag

Less pure.More efficient. (∼ 1.5%)ν leads to “missing” energyHandful of different decay modes.B → D(∗)`ν̄

M. Bellis April. 2010 FNAL 14 / 26

Tagging methods

Completely reconstruct one B.

Breco or Btag

Search the other B for decays of interest.

Brecoil or Bsig

Two tagging methods:

Hadronic tag

More pure.Less efficient. (∼ 0.2%)∼ 1000 different decay modes!B → D(∗) + π

B → D(∗) + ππ

B → D(∗) + πK

.

.

.

Semileptonic tag

Less pure.More efficient. (∼ 1.5%)ν leads to “missing” energyHandful of different decay modes.B → D(∗)`ν̄

M. Bellis April. 2010 FNAL 14 / 26

Tagging methods

Completely reconstruct one B.

Breco or Btag

Search the other B for decays of interest.

Brecoil or Bsig

Two tagging methods:

Hadronic tag

More pure.Less efficient. (∼ 0.2%)∼ 1000 different decay modes!B → D(∗) + π

B → D(∗) + ππ

B → D(∗) + πK

.

.

.

Semileptonic tag

Less pure.More efficient. (∼ 1.5%)ν leads to “missing” energyHandful of different decay modes.B → D(∗)`ν̄

M. Bellis April. 2010 FNAL 14 / 26

Tagging methods

Completely reconstruct one B.

Breco or Btag

Search the other B for decays of interest.

Brecoil or Bsig

Two tagging methods:

Hadronic tag

More pure.Less efficient. (∼ 0.2%)∼ 1000 different decay modes!B → D(∗) + π

B → D(∗) + ππ

B → D(∗) + πK

.

.

.

Semileptonic tag

Less pure.More efficient. (∼ 1.5%)ν leads to “missing” energyHandful of different decay modes.B → D(∗)`ν̄

M. Bellis April. 2010 FNAL 14 / 26

B → `ν with semileptonic tag

Topology, kinematics and particle ID are used to suppress background.

Eextra strongest discriminating variable.

Extra neutral energy in the reaction.ν’ will not deposit extra energy.Peaks at 0 for reaction of interest.

Look at multiple decay modes of the τ !

τ → eν̄ντ → µν̄ντ → πντ → ρν

Phys.Rev.D80:051101,2010 (arXiv:0809.4027) 459× 106 BB̄ pairs

M. Bellis April. 2010 FNAL 15 / 26

B → `ν with semileptonic tag

Topology, kinematics and particle ID are used to suppress background.

Eextra strongest discriminating variable.

Extra neutral energy in the reaction.ν’ will not deposit extra energy.Peaks at 0 for reaction of interest.

Look at multiple decay modes of the τ !

τ → eν̄ντ → µν̄ντ → πντ → ρν

Phys.Rev.D80:051101,2010 (arXiv:0809.4027) 459× 106 BB̄ pairs

M. Bellis April. 2010 FNAL 15 / 26

B → `ν with semileptonic tag

Topology, kinematics and particle ID are used to suppress background.

Eextra strongest discriminating variable.

Extra neutral energy in the reaction.ν’ will not deposit extra energy.Peaks at 0 for reaction of interest.

Look at multiple decay modes of the τ !

τ → eν̄ντ → µν̄ντ → πντ → ρν

Phys.Rev.D80:051101,2010 (arXiv:0809.4027) 459× 106 BB̄ pairs

M. Bellis April. 2010 FNAL 15 / 26

B → `ν results

B → τ ν̄

τ → eν̄ντ → µν̄ντ → πντ → ρν

B → τ ν̄ (Total)

SL:B(B → τ ν̄) = 1.8±0.8±0.1×10−4

Had:B(B → τ ν̄) = 1.8±0.4±0.2×10−4

PRL 97,251802 (2006)

arXiv:0809.3834

SL:B(B → τ ν̄) = 1.65±0.4±0.4×10−4

Had:B(B → τ ν̄) = 1.79±0.5±0.5×10−4

M. Bellis April. 2010 FNAL 16 / 26

B → `ν results

B → τ ν̄

τ → eν̄ντ → µν̄ντ → πντ → ρν

B → τ ν̄ (Total)

SL:B(B → τ ν̄) = 1.8±0.8±0.1×10−4

Had:B(B → τ ν̄) = 1.8±0.4±0.2×10−4

PRL 97,251802 (2006)

arXiv:0809.3834

SL:B(B → τ ν̄) = 1.65±0.4±0.4×10−4

Had:B(B → τ ν̄) = 1.79±0.5±0.5×10−4

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

20

40

60

80

100

120

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

2

4

6

8

10

Generic MC

On Peak Data

Signal MC

M. Bellis April. 2010 FNAL 16 / 26

B → `ν results

B → τ ν̄

τ → eν̄ντ → µν̄ντ → πντ → ρν

B → τ ν̄ (Total)

SL:B(B → τ ν̄) = 1.8±0.8±0.1×10−4

Had:B(B → τ ν̄) = 1.8±0.4±0.2×10−4

PRL 97,251802 (2006)

arXiv:0809.3834

SL:B(B → τ ν̄) = 1.65±0.4±0.4×10−4

Had:B(B → τ ν̄) = 1.79±0.5±0.5×10−4

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

20

40

60

80

100

120

140

160

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

1

2

3

4

5

6

7

8

Generic MC

On Peak Data

Signal MC

M. Bellis April. 2010 FNAL 16 / 26

B → `ν results

B → τ ν̄

τ → eν̄ντ → µν̄ντ → πντ → ρν

B → τ ν̄ (Total)

SL:B(B → τ ν̄) = 1.8±0.8±0.1×10−4

Had:B(B → τ ν̄) = 1.8±0.4±0.2×10−4

PRL 97,251802 (2006)

arXiv:0809.3834

SL:B(B → τ ν̄) = 1.65±0.4±0.4×10−4

Had:B(B → τ ν̄) = 1.79±0.5±0.5×10−4

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

50

100

150

200

250

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

1

2

3

4

5

6

7

8

9

Generic MC

On Peak Data

Signal MC

M. Bellis April. 2010 FNAL 16 / 26

B → `ν results

B → τ ν̄

τ → eν̄ντ → µν̄ντ → πντ → ρν

B → τ ν̄ (Total)

SL:B(B → τ ν̄) = 1.8±0.8±0.1×10−4

Had:B(B → τ ν̄) = 1.8±0.4±0.2×10−4

PRL 97,251802 (2006)

arXiv:0809.3834

SL:B(B → τ ν̄) = 1.65±0.4±0.4×10−4

Had:B(B → τ ν̄) = 1.79±0.5±0.5×10−4

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

10

20

30

40

50

60

70

80

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

Generic MC

On Peak Data

Signal MC

M. Bellis April. 2010 FNAL 16 / 26

B → `ν results

B → τ ν̄

τ → eν̄ντ → µν̄ντ → πντ → ρν

B → τ ν̄ (Total)

SL:B(B → τ ν̄) = 1.8±0.8±0.1×10−4

Had:B(B → τ ν̄) = 1.8±0.4±0.2×10−4

PRL 97,251802 (2006)

arXiv:0809.3834

SL:B(B → τ ν̄) = 1.65±0.4±0.4×10−4

Had:B(B → τ ν̄) = 1.79±0.5±0.5×10−4

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

50

100

150

200

250

300

350

400

450

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2

Ev

en

ts/0

.12

5 G

eV

0

5

10

15

20

25

30 Generic MC

On Peak Data

Signal MC

M. Bellis April. 2010 FNAL 16 / 26

B → `ν results

B → τ ν̄

τ → eν̄ντ → µν̄ντ → πντ → ρν

B → τ ν̄ (Total)

SL:B(B → τ ν̄) = 1.8±0.8±0.1×10−4

Had:B(B → τ ν̄) = 1.8±0.4±0.2×10−4

PRL 97,251802 (2006)

arXiv:0809.3834

SL:B(B → τ ν̄) = 1.65±0.4±0.4×10−4

Had:B(B → τ ν̄) = 1.79±0.5±0.5×10−4

M. Bellis April. 2010 FNAL 16 / 26

B → `ν results

B → µν̄

11 observed15±10 expected bkg.B(B → µν̄)UL90% = 11× 10−6

B → eν̄

17 observed24±11 expected bkg.B(B → eν̄)UL90% = 7.7× 10−6

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ev

en

ts/0

.72

GeV

0

2

4

6

8

10

12

14

16

(GeV)extraE

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ev

en

ts/0

.72

GeV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generic MC

On Peak Data

Signal MC

(GeV)extraE

0 0.2 0.4 0.6 0.8 1

Ev

en

ts/0

.57

GeV

0

5

10

15

20

25

(GeV)extraE

0 0.2 0.4 0.6 0.8 1

Ev

en

ts/0

.57

GeV

0

2

4

6

8

10

12

14

16

18

20

22

-610×

Generic MC

On Peak Data

Signal MC

M. Bellis April. 2010 FNAL 17 / 26

B → e/µν̄ inclusive

Very rare (BR∼ 10−7, 10−12 respectively)

Other experimental methods?

Inclusive measurement.

Very strong signal-side signature...

A single, monochromatic lepton in the Brest frame.

Momentum smeared distribution inthe CM frame.Apply tight particle ID criteria andreject events with more leptons.

Inclusive approach for the rest of theevent.

Highly efficient...but highbackground too.Build an inclusive 4-momentumwith everything else in the event.Discriminate with mES and ∆EBackground suppression withkinematic and topological variablescombined with a Fisherdiscriminant.

PRD 79,091101 (2009) 468× 106 BB̄ pairsM. Bellis April. 2010 FNAL 18 / 26

B → e/µν̄ inclusive

Very rare (BR∼ 10−7, 10−12 respectively)

Other experimental methods?

Inclusive measurement.

Very strong signal-side signature...

A single, monochromatic lepton in the Brest frame.

Momentum smeared distribution inthe CM frame.Apply tight particle ID criteria andreject events with more leptons.

Inclusive approach for the rest of theevent.

Highly efficient...but highbackground too.Build an inclusive 4-momentumwith everything else in the event.Discriminate with mES and ∆EBackground suppression withkinematic and topological variablescombined with a Fisherdiscriminant.

PRD 79,091101 (2009) 468× 106 BB̄ pairsM. Bellis April. 2010 FNAL 18 / 26

B → e/µν̄ inclusive

Very rare (BR∼ 10−7, 10−12 respectively)

Other experimental methods?

Inclusive measurement.

Very strong signal-side signature...

A single, monochromatic lepton in the Brest frame.

Momentum smeared distribution inthe CM frame.Apply tight particle ID criteria andreject events with more leptons.

Inclusive approach for the rest of theevent.

Highly efficient...but highbackground too.Build an inclusive 4-momentumwith everything else in the event.Discriminate with mES and ∆EBackground suppression withkinematic and topological variablescombined with a Fisherdiscriminant.

PRD 79,091101 (2009) 468× 106 BB̄ pairsM. Bellis April. 2010 FNAL 18 / 26

B → e/µν̄ inclusive results

Simultaneous fit to:

mES of the inclusive B.p∗` : transformed lepton momentum(CM and B rest frame)

B → eν̄

B at 90% CL < 1.9× 10−6

B at 90% CL < 0.98× 10−6

B → µν̄

B at 90% CL < 1.0× 10−6

B at 90% CL < 1.7× 10−6]2 [GeV/cESm

5.2 5.22 5.24 5.26 5.28 5.3

Ev

en

ts /

( 0

.00

22

)

0

10

20

30

40

50

60

]2 [GeV/cESm

5.2 5.22 5.24 5.26 5.28 5.3

Ev

en

ts /

( 0

.00

22

)

0

10

20

30

40

50

60(a)

(GeV/c)FIT

p-5 0 5 10 15 20

Ev

ents

/ (

1 G

eV/c

)

0

50

100

150

200

(GeV/c)FIT

p-5 0 5 10 15 20

Ev

ents

/ (

1 G

eV/c

)

0

50

100

150

200(b)

M. Bellis April. 2010 FNAL 19 / 26

B → e/µν̄ inclusive results

Simultaneous fit to:

mES of the inclusive B.p∗` : transformed lepton momentum(CM and B rest frame)

B → eν̄

B at 90% CL < 1.9× 10−6

B at 90% CL < 0.98× 10−6

B → µν̄

B at 90% CL < 1.0× 10−6

B at 90% CL < 1.7× 10−6]2 [GeV/cESm

5.2 5.22 5.24 5.26 5.28 5.3

Ev

en

ts /

( 0

.00

22

)

0

10

20

30

40

50

60

]2 [GeV/cESm

5.2 5.22 5.24 5.26 5.28 5.3

Ev

en

ts /

( 0

.00

22

)

0

10

20

30

40

50

60(a)

(GeV/c)FIT

p-5 0 5 10 15 20

Ev

ents

/ (

1 G

eV/c

)

0

50

100

150

200

(GeV/c)FIT

p-5 0 5 10 15 20

Ev

ents

/ (

1 G

eV/c

)

0

50

100

150

200(b)

M. Bellis April. 2010 FNAL 19 / 26

B → e/µν̄ inclusive results

Simultaneous fit to:

mES of the inclusive B.p∗` : transformed lepton momentum(CM and B rest frame)

B → eν̄

B at 90% CL < 1.9× 10−6

B at 90% CL < 0.98× 10−6

B → µν̄

B at 90% CL < 1.0× 10−6

B at 90% CL < 1.7× 10−6]2 [GeV/cESm

5.22 5.24 5.26 5.28 5.3

Ev

en

ts /

( 0

.00

18

)

0

5

10

15

20

]2 [GeV/cESm

5.22 5.24 5.26 5.28 5.3

Ev

en

ts /

( 0

.00

18

)

0

5

10

15

20 (c)

(GeV)FIT

p-5 0 5 10 15 20

Ev

ents

/ (

1 G

eV )

0

10

20

30

40

50

60

(GeV)FIT

p-5 0 5 10 15 20

Ev

ents

/ (

1 G

eV )

0

10

20

30

40

50

60 (d)

M. Bellis April. 2010 FNAL 19 / 26

B → e/µν̄ inclusive results

Simultaneous fit to:

mES of the inclusive B.p∗` : transformed lepton momentum(CM and B rest frame)

B → eν̄

B at 90% CL < 1.9× 10−6

B at 90% CL < 0.98× 10−6

B → µν̄

B at 90% CL < 1.0× 10−6

B at 90% CL < 1.7× 10−6]2 [GeV/cESm

5.22 5.24 5.26 5.28 5.3

Ev

en

ts /

( 0

.00

18

)

0

5

10

15

20

]2 [GeV/cESm

5.22 5.24 5.26 5.28 5.3

Ev

en

ts /

( 0

.00

18

)

0

5

10

15

20 (c)

(GeV)FIT

p-5 0 5 10 15 20

Ev

ents

/ (

1 G

eV )

0

10

20

30

40

50

60

(GeV)FIT

p-5 0 5 10 15 20

Ev

ents

/ (

1 G

eV )

0

10

20

30

40

50

60 (d)

M. Bellis April. 2010 FNAL 19 / 26

B → `νγ with hadronic tags

No helicity suppression.

Dependence on αEM and form factors.

Model dependent

HQET LO: fA = fVOthers: fA = 0

Experimentally, making no requirementson lepton or photon momenta reduces themodel dependence.

B(B+ → `+νγ) =αG2

FmB

288π|Vub|2f 2

Bm5BτB(

Qu

λB−Qu

λb)2

PRD 80,111105 (2009) arXiv:0907.1681 465× 106BB̄ pairs

M. Bellis April. 2010 FNAL 20 / 26

B → `νγ with hadronic tags results

Model independent estimation of B.

Cut and count analysis with ULdetermined with frequentistapproach.

B → eν̄γ

FC CL band: < 17× 10−6

B → µν̄γ

FC CL band: < 26× 10−6

B → `ν̄γ

FC CL band: < 15× 10−6

B = 6.47+7.6+2.8−4.7−0.8 × 10−6 at 2.1σ

)4/c2 (GeVeν

2m−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

)4/c2 (GeVµ

ν 2m

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

M. Bellis April. 2010 FNAL 21 / 26

B → `νγ with hadronic tags results

Model independent estimation of B.

Cut and count analysis with ULdetermined with frequentistapproach.

B → eν̄γ

FC CL band: < 17× 10−6

B → µν̄γ

FC CL band: < 26× 10−6

B → `ν̄γ

FC CL band: < 15× 10−6

B = 6.47+7.6+2.8−4.7−0.8 × 10−6 at 2.1σ

)4/c2 (GeVeν

2m−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

)4/c2 (GeVµ

ν 2m

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

M. Bellis April. 2010 FNAL 21 / 26

B → `νγ with hadronic tags results

Model independent estimation of B.

Cut and count analysis with ULdetermined with frequentistapproach.

B → eν̄γ

FC CL band: < 17× 10−6

B → µν̄γ

FC CL band: < 26× 10−6

B → `ν̄γ

FC CL band: < 15× 10−6

B = 6.47+7.6+2.8−4.7−0.8 × 10−6 at 2.1σ

)4/c2 (GeVeν

2m−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

)4/c2 (GeVµ

ν 2m

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

M. Bellis April. 2010 FNAL 21 / 26

B → `νγ with hadronic tags results

Model dependent estimation of B.

Cut on `− γ angle and ν − γ anglein hypothesis of fA = fV or fA = 0

fA = fVeν̄γ < 8.4× 10−6

µν̄γ < 6.7× 10−6

`ν̄γ < 3.0× 10−6

fA = fVeν̄γ < 8.4× 10−6

µν̄γ < 6.7× 10−6

`ν̄γ < 3.0× 10−6

)4/c2 (GeVeν

2m−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

)4/c2 (GeVµ

ν 2m

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

M. Bellis April. 2010 FNAL 22 / 26

B → `νγ with hadronic tags results

Model dependent estimation of B.

Cut on `− γ angle and ν − γ anglein hypothesis of fA = fV or fA = 0

fA = fVeν̄γ < 8.4× 10−6

µν̄γ < 6.7× 10−6

`ν̄γ < 3.0× 10−6

fA = fVeν̄γ < 8.4× 10−6

µν̄γ < 6.7× 10−6

`ν̄γ < 3.0× 10−6

)4/c2 (GeVeν

2m−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

)4/c2 (GeVµ

ν 2m

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

M. Bellis April. 2010 FNAL 22 / 26

B → `νγ with hadronic tags results

Model dependent estimation of B.

Cut on `− γ angle and ν − γ anglein hypothesis of fA = fV or fA = 0

fA = fVeν̄γ < 8.4× 10−6

µν̄γ < 6.7× 10−6

`ν̄γ < 3.0× 10−6

fA = fVeν̄γ < 8.4× 10−6

µν̄γ < 6.7× 10−6

`ν̄γ < 3.0× 10−6

)4/c2 (GeVeν

2m−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

)4/c2 (GeVµ

ν 2m

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

)4

/c2

En

trie

s/(

0.2

Ge

V

0

1

2

3

4

5

6

7

M. Bellis April. 2010 FNAL 22 / 26

Lepton flavour violating modes

First two generations less challenging than τ .

But the third generation is most sensitive to NPUsually published along with LFC analyses of B → `+`− and B → K`+`− (where` = e, µ)

Both analyses use very similar methodology based on hadronic tag reconstruction.

PRD 77,091104 (2008) arXiv:0801.0697 378× 106 BB̄ pairs

PRL 99,201801 (2007) arXiv:0708.1303 383× 106 BB̄ pairs

M. Bellis April. 2010 FNAL 23 / 26

B → `τ(` = e, µ) with hadronic tags results

Well established methodology.

Same as B → `ν

Hadronic B tag

Lepton monochromatic in the B restframe.

Very clear signature.

Straightforward reconstruction of the τ

Full 4-momenta

90% CL upper limits.

B(B0 → eτ) < 2.8× 10−5

B(B0 → µτ) < 2.2× 10−5

B(B0 → K+µτ) < 7.7× 10−5

Lepton Momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

Lepton Momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

+ e→0

B

BABAR

Lepton momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

Lepton momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40 BABAR

-τ+µ →

0B

M. Bellis April. 2010 FNAL 24 / 26

B → `τ(` = e, µ) with hadronic tags results

Well established methodology.

Same as B → `ν

Hadronic B tag

Lepton monochromatic in the B restframe.

Very clear signature.

Straightforward reconstruction of the τ

Full 4-momenta

90% CL upper limits.

B(B0 → eτ) < 2.8× 10−5

B(B0 → µτ) < 2.2× 10−5

B(B0 → K+µτ) < 7.7× 10−5

Lepton Momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

Lepton Momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

+ e→0

B

BABAR

Lepton momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

Lepton momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40 BABAR

-τ+µ →

0B

M. Bellis April. 2010 FNAL 24 / 26

B → `τ(` = e, µ) with hadronic tags results

Well established methodology.

Same as B → `ν

Hadronic B tag

Lepton monochromatic in the B restframe.

Very clear signature.

Straightforward reconstruction of the τ

Full 4-momenta

90% CL upper limits.

B(B0 → eτ) < 2.8× 10−5

B(B0 → µτ) < 2.2× 10−5

B(B0 → K+µτ) < 7.7× 10−5

Lepton Momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

Lepton Momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

+ e→0

B

BABAR

Lepton momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

Lepton momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40 BABAR

-τ+µ →

0B

M. Bellis April. 2010 FNAL 24 / 26

B → `τ(` = e, µ) with hadronic tags results

Well established methodology.

Same as B → `ν

Hadronic B tag

Lepton monochromatic in the B restframe.

Very clear signature.

Straightforward reconstruction of the τ

Full 4-momenta

90% CL upper limits.

B(B0 → eτ) < 2.8× 10−5

B(B0 → µτ) < 2.2× 10−5

B(B0 → K+µτ) < 7.7× 10−5

Lepton Momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

Lepton Momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

+ e→0

B

BABAR

Lepton momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40

Lepton momentum (GeV/c)1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7E

ntr

ies

/ 0

.02

5 G

eV/c

0

10

20

30

40 BABAR

-τ+µ →

0B

M. Bellis April. 2010 FNAL 24 / 26

B → K+µτ

Potentially the most sensitive LFVchannel to NP.

Hadronic B tag

Signal side completely reconstructed.

τ mass defines the signal.

Main background (and control sample)from b → c`ν

M.Sher and Y.Yuan,PRD44,1461 (1991) T.P.Cheng and

M.Sher,PRD35,3484 (1987)

)2 (GeV/cτm0 0.5 1 1.5 2 2.5 3

2E

ven

ts /

12

5 M

eV/c

0

2

4

Arb

. U

nit

s2

per

25

MeV

/c

)2

(GeV/cτ

m1.6 1.8 2

M. Bellis April. 2010 FNAL 25 / 26

Summary

B-factories have had much success with B-leptonic decays

B → τ ν̄ MEASURED!

Tension in SM

B → µν̄ Upper limit...but but at edge of SM!B → eν̄ Upper limit...B → γ`ν̄ Upper limit...but at edge of SM!

Lepton flavour violating modes

B → ``′ Upper limit...B → K``′ Upper limit...

Belle is still running and BaBar is still analyzing.

Next generation B-factories could be very exciting!

Thanks for your time!

M. Bellis April. 2010 FNAL 26 / 26

Summary

B-factories have had much success with B-leptonic decays

B → τ ν̄ MEASURED!

Tension in SM

B → µν̄ Upper limit...but but at edge of SM!B → eν̄ Upper limit...B → γ`ν̄ Upper limit...but at edge of SM!

Lepton flavour violating modes

B → ``′ Upper limit...B → K``′ Upper limit...

Belle is still running and BaBar is still analyzing.

Next generation B-factories could be very exciting!

Thanks for your time!

M. Bellis April. 2010 FNAL 26 / 26

Summary

B-factories have had much success with B-leptonic decays

B → τ ν̄ MEASURED!

Tension in SM

B → µν̄ Upper limit...but but at edge of SM!B → eν̄ Upper limit...B → γ`ν̄ Upper limit...but at edge of SM!

Lepton flavour violating modes

B → ``′ Upper limit...B → K``′ Upper limit...

Belle is still running and BaBar is still analyzing.

Next generation B-factories could be very exciting!

Thanks for your time!

M. Bellis April. 2010 FNAL 26 / 26

Summary

B-factories have had much success with B-leptonic decays

B → τ ν̄ MEASURED!

Tension in SM

B → µν̄ Upper limit...but but at edge of SM!B → eν̄ Upper limit...B → γ`ν̄ Upper limit...but at edge of SM!

Lepton flavour violating modes

B → ``′ Upper limit...B → K``′ Upper limit...

Belle is still running and BaBar is still analyzing.

Next generation B-factories could be very exciting!

Thanks for your time!

M. Bellis April. 2010 FNAL 26 / 26

Summary

B-factories have had much success with B-leptonic decays

B → τ ν̄ MEASURED!

Tension in SM

B → µν̄ Upper limit...but but at edge of SM!B → eν̄ Upper limit...B → γ`ν̄ Upper limit...but at edge of SM!

Lepton flavour violating modes

B → ``′ Upper limit...B → K``′ Upper limit...

Belle is still running and BaBar is still analyzing.

Next generation B-factories could be very exciting!

Thanks for your time!

M. Bellis April. 2010 FNAL 26 / 26