Lesson 16: Derivatives of Logarithmic and Exponential Functions

Post on 18-Dec-2014

2,237 views 2 download

description

We show the the derivative of the exponential function is itself! And the derivative of the natural logarithm function is the reciprocal function. We also show how logarithms can make complicated differentiation problems easier.

transcript

. . . . . .

Section3.3DerivativesofExponentialand

LogarithmicFunctions

V63.0121.034, CalculusI

October21, 2009

Announcements

I

..Imagecredit: heipei

. . . . . .

Outline

DerivativeofthenaturalexponentialfunctionExponentialGrowth

Derivativeofthenaturallogarithmfunction

DerivativesofotherexponentialsandlogarithmsOtherexponentialsOtherlogarithms

LogarithmicDifferentiationThepowerruleforirrationalpowers

. . . . . .

DerivativesofExponentialFunctions

FactIf f(x) = ax, then f′(x) = f′(0)ax.

Proof.Followyournose:

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

ax+h − ax

h

= limh→0

axah − ax

h= ax · lim

h→0

ah − 1h

= ax · f′(0).

Toreiterate: thederivativeofanexponentialfunctionisaconstant times thatfunction. Muchdifferentfrompolynomials!

. . . . . .

DerivativesofExponentialFunctions

FactIf f(x) = ax, then f′(x) = f′(0)ax.

Proof.Followyournose:

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

ax+h − ax

h

= limh→0

axah − ax

h= ax · lim

h→0

ah − 1h

= ax · f′(0).

Toreiterate: thederivativeofanexponentialfunctionisaconstant times thatfunction. Muchdifferentfrompolynomials!

. . . . . .

DerivativesofExponentialFunctions

FactIf f(x) = ax, then f′(x) = f′(0)ax.

Proof.Followyournose:

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

ax+h − ax

h

= limh→0

axah − ax

h= ax · lim

h→0

ah − 1h

= ax · f′(0).

Toreiterate: thederivativeofanexponentialfunctionisaconstant times thatfunction. Muchdifferentfrompolynomials!

. . . . . .

Thefunnylimitinthecaseof eRememberthedefinitionof e:

e = limn→∞

(1 +

1n

)n

= limh→0

(1 + h)1/h

Question

Whatis limh→0

eh − 1h

?

AnswerIf h issmallenough, e ≈ (1 + h)1/h. So

eh − 1h

≈[(1 + h)1/h

]h − 1h

=(1 + h) − 1

h=

hh

= 1

Sointhelimitwegetequality: limh→0

eh − 1h

= 1

. . . . . .

Thefunnylimitinthecaseof eRememberthedefinitionof e:

e = limn→∞

(1 +

1n

)n

= limh→0

(1 + h)1/h

Question

Whatis limh→0

eh − 1h

?

AnswerIf h issmallenough, e ≈ (1 + h)1/h. So

eh − 1h

≈[(1 + h)1/h

]h − 1h

=(1 + h) − 1

h=

hh

= 1

Sointhelimitwegetequality: limh→0

eh − 1h

= 1

. . . . . .

Thefunnylimitinthecaseof eRememberthedefinitionof e:

e = limn→∞

(1 +

1n

)n

= limh→0

(1 + h)1/h

Question

Whatis limh→0

eh − 1h

?

AnswerIf h issmallenough, e ≈ (1 + h)1/h. So

eh − 1h

≈[(1 + h)1/h

]h − 1h

=(1 + h) − 1

h=

hh

= 1

Sointhelimitwegetequality: limh→0

eh − 1h

= 1

. . . . . .

Derivativeofthenaturalexponentialfunction

From

ddx

ax =

(limh→0

ah − 1h

)ax and lim

h→0

eh − 1h

= 1

weget:

Theorem

ddx

ex = ex

. . . . . .

ExponentialGrowth

I Commonlymisusedtermtosaysomethinggrowsexponentially

I Itmeanstherateofchange(derivative)isproportionaltothecurrentvalue

I Examples: Naturalpopulationgrowth, compoundedinterest,socialnetworks

. . . . . .

Examples

ExamplesFindthesederivatives:

I e3x

I ex2

I x2ex

Solution

I ddx

e3x = 3e3x

I ddx

ex2

= ex2 ddx

(x2) = 2xex2

I ddx

x2ex = 2xex + x2ex

. . . . . .

Examples

ExamplesFindthesederivatives:

I e3x

I ex2

I x2ex

Solution

I ddx

e3x = 3e3x

I ddx

ex2

= ex2 ddx

(x2) = 2xex2

I ddx

x2ex = 2xex + x2ex

. . . . . .

Examples

ExamplesFindthesederivatives:

I e3x

I ex2

I x2ex

Solution

I ddx

e3x = 3e3x

I ddx

ex2

= ex2 ddx

(x2) = 2xex2

I ddx

x2ex = 2xex + x2ex

. . . . . .

Examples

ExamplesFindthesederivatives:

I e3x

I ex2

I x2ex

Solution

I ddx

e3x = 3e3x

I ddx

ex2

= ex2 ddx

(x2) = 2xex2

I ddx

x2ex = 2xex + x2ex

. . . . . .

Outline

DerivativeofthenaturalexponentialfunctionExponentialGrowth

Derivativeofthenaturallogarithmfunction

DerivativesofotherexponentialsandlogarithmsOtherexponentialsOtherlogarithms

LogarithmicDifferentiationThepowerruleforirrationalpowers

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

. . . . . .

TheTowerofPowers

y y′

x3 3x2

x2 2x1

x1 1x0

x0 0

? ?

x−1 −1x−2

x−2 −2x−3

I Thederivativeofapowerfunctionisapowerfunctionofonelowerpower

I Eachpowerfunctionisthederivativeofanotherpowerfunction, exceptx−1

I ln x fillsinthisgapprecisely.

. . . . . .

TheTowerofPowers

y y′

x3 3x2

x2 2x1

x1 1x0

x0 0

? x−1

x−1 −1x−2

x−2 −2x−3

I Thederivativeofapowerfunctionisapowerfunctionofonelowerpower

I Eachpowerfunctionisthederivativeofanotherpowerfunction, exceptx−1

I ln x fillsinthisgapprecisely.

. . . . . .

TheTowerofPowers

y y′

x3 3x2

x2 2x1

x1 1x0

x0 0

ln x x−1

x−1 −1x−2

x−2 −2x−3

I Thederivativeofapowerfunctionisapowerfunctionofonelowerpower

I Eachpowerfunctionisthederivativeofanotherpowerfunction, exceptx−1

I ln x fillsinthisgapprecisely.

. . . . . .

Outline

DerivativeofthenaturalexponentialfunctionExponentialGrowth

Derivativeofthenaturallogarithmfunction

DerivativesofotherexponentialsandlogarithmsOtherexponentialsOtherlogarithms

LogarithmicDifferentiationThepowerruleforirrationalpowers

. . . . . .

Otherlogarithms

Example

Useimplicitdifferentiationtofindddx

ax.

SolutionLet y = ax, so

ln y = ln ax = x ln a

Differentiateimplicitly:

1ydydx

= ln a =⇒ dydx

= (ln a)y = (ln a)ax

Beforeweshowed y′ = y′(0)y, sonowweknowthat

ln 2 = limh→0

2h − 1h

≈ 0.693 ln 3 = limh→0

3h − 1h

≈ 1.10

. . . . . .

Otherlogarithms

Example

Useimplicitdifferentiationtofindddx

ax.

SolutionLet y = ax, so

ln y = ln ax = x ln a

Differentiateimplicitly:

1ydydx

= ln a =⇒ dydx

= (ln a)y = (ln a)ax

Beforeweshowed y′ = y′(0)y, sonowweknowthat

ln 2 = limh→0

2h − 1h

≈ 0.693 ln 3 = limh→0

3h − 1h

≈ 1.10

. . . . . .

Otherlogarithms

Example

Useimplicitdifferentiationtofindddx

ax.

SolutionLet y = ax, so

ln y = ln ax = x ln a

Differentiateimplicitly:

1ydydx

= ln a =⇒ dydx

= (ln a)y = (ln a)ax

Beforeweshowed y′ = y′(0)y, sonowweknowthat

ln 2 = limh→0

2h − 1h

≈ 0.693 ln 3 = limh→0

3h − 1h

≈ 1.10

. . . . . .

Otherlogarithms

Example

Useimplicitdifferentiationtofindddx

ax.

SolutionLet y = ax, so

ln y = ln ax = x ln a

Differentiateimplicitly:

1ydydx

= ln a =⇒ dydx

= (ln a)y = (ln a)ax

Beforeweshowed y′ = y′(0)y, sonowweknowthat

ln 2 = limh→0

2h − 1h

≈ 0.693 ln 3 = limh→0

3h − 1h

≈ 1.10

. . . . . .

Otherlogarithms

Example

Findddx

loga x.

SolutionLet y = loga x, so ay = x. Nowdifferentiateimplicitly:

(ln a)aydydx

= 1 =⇒ dydx

=1

ay ln a=

1x ln a

Anotherwaytoseethisistotakethenaturallogarithm:

ay = x =⇒ y ln a = ln x =⇒ y =ln xln a

Sodydx

=1ln a

1x.

. . . . . .

Otherlogarithms

Example

Findddx

loga x.

SolutionLet y = loga x, so ay = x.

Nowdifferentiateimplicitly:

(ln a)aydydx

= 1 =⇒ dydx

=1

ay ln a=

1x ln a

Anotherwaytoseethisistotakethenaturallogarithm:

ay = x =⇒ y ln a = ln x =⇒ y =ln xln a

Sodydx

=1ln a

1x.

. . . . . .

Otherlogarithms

Example

Findddx

loga x.

SolutionLet y = loga x, so ay = x. Nowdifferentiateimplicitly:

(ln a)aydydx

= 1 =⇒ dydx

=1

ay ln a=

1x ln a

Anotherwaytoseethisistotakethenaturallogarithm:

ay = x =⇒ y ln a = ln x =⇒ y =ln xln a

Sodydx

=1ln a

1x.

. . . . . .

Otherlogarithms

Example

Findddx

loga x.

SolutionLet y = loga x, so ay = x. Nowdifferentiateimplicitly:

(ln a)aydydx

= 1 =⇒ dydx

=1

ay ln a=

1x ln a

Anotherwaytoseethisistotakethenaturallogarithm:

ay = x =⇒ y ln a = ln x =⇒ y =ln xln a

Sodydx

=1ln a

1x.

. . . . . .

Moreexamples

Example

Findddx

log2(x2 + 1)

Answer

dydx

=1ln 2

1x2 + 1

(2x) =2x

(ln 2)(x2 + 1)

. . . . . .

Moreexamples

Example

Findddx

log2(x2 + 1)

Answer

dydx

=1ln 2

1x2 + 1

(2x) =2x

(ln 2)(x2 + 1)

. . . . . .

Outline

DerivativeofthenaturalexponentialfunctionExponentialGrowth

Derivativeofthenaturallogarithmfunction

DerivativesofotherexponentialsandlogarithmsOtherexponentialsOtherlogarithms

LogarithmicDifferentiationThepowerruleforirrationalpowers

. . . . . .

A nastyderivative

Example

Let y =(x2 + 1)

√x + 3

x− 1. Find y′.

SolutionWeusethequotientrule, andtheproductruleinthenumerator:

y′ =(x− 1)

[2x

√x + 3 + (x2 + 1)12(x + 3)−1/2

]− (x2 + 1)

√x + 3(1)

(x− 1)2

=2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

. . . . . .

A nastyderivative

Example

Let y =(x2 + 1)

√x + 3

x− 1. Find y′.

SolutionWeusethequotientrule, andtheproductruleinthenumerator:

y′ =(x− 1)

[2x

√x + 3 + (x2 + 1)12(x + 3)−1/2

]− (x2 + 1)

√x + 3(1)

(x− 1)2

=2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

. . . . . .

Anotherway

y =(x2 + 1)

√x + 3

x− 1

ln y = ln(x2 + 1) +12ln(x + 3) − ln(x− 1)

1ydydx

=2x

x2 + 1+

12(x + 3)

− 1x− 1

So

dydx

=

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)y

=

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

. . . . . .

Compareandcontrast

I Usingtheproduct, quotient, andpowerrules:

y′ =2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

I Usinglogarithmicdifferentiation:

y′ =

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

I Arethesethesame?I Whichdoyoulikebetter?I Whatkindsofexpressionsarewell-suitedforlogarithmicdifferentiation?

. . . . . .

Compareandcontrast

I Usingtheproduct, quotient, andpowerrules:

y′ =2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

I Usinglogarithmicdifferentiation:

y′ =

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

I Arethesethesame?

I Whichdoyoulikebetter?I Whatkindsofexpressionsarewell-suitedforlogarithmicdifferentiation?

. . . . . .

Compareandcontrast

I Usingtheproduct, quotient, andpowerrules:

y′ =2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

I Usinglogarithmicdifferentiation:

y′ =

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

I Arethesethesame?I Whichdoyoulikebetter?

I Whatkindsofexpressionsarewell-suitedforlogarithmicdifferentiation?

. . . . . .

Compareandcontrast

I Usingtheproduct, quotient, andpowerrules:

y′ =2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

I Usinglogarithmicdifferentiation:

y′ =

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

I Arethesethesame?I Whichdoyoulikebetter?I Whatkindsofexpressionsarewell-suitedforlogarithmicdifferentiation?

. . . . . .

Derivativesofpowers

Let y = xx. Whichoftheseistrue?

(A) Since y isapowerfunction, y′ = x · xx−1 = xx.

(B) Since y isanexponentialfunction, y′ = (ln x) · xx

(C) Neither

. . . . . .

Derivativesofpowers

Let y = xx. Whichoftheseistrue?

(A) Since y isapowerfunction, y′ = x · xx−1 = xx.

(B) Since y isanexponentialfunction, y′ = (ln x) · xx

(C) Neither

. . . . . .

It’sneither! Orboth?

If y = xx, then

ln y = x ln x

1ydydx

= x · 1x

+ ln x = 1 + ln x

dydx

= xx + (ln x)xx

Eachofthesetermsisoneofthewronganswers!

. . . . . .

Derivativeofarbitrarypowers

Fact(Thepowerrule)Let y = xr. Then y′ = rxr−1.

Proof.

y = xr =⇒ ln y = r ln x

Nowdifferentiate:

1ydydx

=rx

=⇒ dydx

= ryx

= rxr−1

. . . . . .

Derivativeofarbitrarypowers

Fact(Thepowerrule)Let y = xr. Then y′ = rxr−1.

Proof.

y = xr =⇒ ln y = r ln x

Nowdifferentiate:

1ydydx

=rx

=⇒ dydx

= ryx

= rxr−1