Lewis Smith Comps Fall 2015

Post on 12-Apr-2017

134 views 0 download

transcript

Vegeta&on  Change:    A  River  Runs  Through  It  

 Riparian  Successional  Change  as  a  Posi&ve  Feedback  

Loop  to  Climate  Change    

By  Connor  Lewis-­‐Smith  

1  

Riparian  Ecosystem  2  

What  is  the  Riparian  Ecosystem?  •  A  biological  feedback  into  

river  geomorphology  and  hydrology  

(Bendix  and  Hubb  2000).  3  

•  Riparian  vegeta&on  succession  is  an  ecological  feedback  to  climate  change  

CO2  Concentra&ons  

Flow  Regime  Change  

Riparian  Vegeta&on    

Weather  PaSerns  

4  

Floods  

WeSer  winters    Increased  flooding  

 Projected  to  con&nue  to  increase  in  severity.     5  

Projected  returns  of  present  100  year  flooding  

Hirabayahi  et  al.  2008  

6  

Historic  Flooding  In  South  Carolina  

“Floodwaters  break  through  a  walkway  in  Columbia,  S.C.,  Monday,  Oct.  5,  2015.  A]er  a  week  of  steady  rain,  the  showers  tapered  off  Monday  and  an  inundated  South  Carolina  turned  to  surveying  a  road  system  shredded  by  historic  flooding”  (AP  Photo/Chuck  Burton)    

7  

Far  Reaching  and  Felt  

•  On  the  Skagit  River  (WA),  the  magnitude  of  50-­‐year-­‐return  flood  events  is  projected  to  increase  15%  by  the  2040s  (compared  to  1916-­‐2006)  (Tillmann  and  Siemann  2011).    

8  

Vegeta&on's  Rela&onship  to  Floods  

•  flood  veloci&es  may  be  substan&ally  decreased  as  vegeta&on  grows  

•   or  abruptly  increased  if  the  vegeta&on  is  destroyed  (Bendix  and  Hubb  2000).  

9  

•  Shi]  plant  communi&es  towards  species  with  less  ability  to  stabilize  sediments  

•  More  intense,  destruc&ve  floods    

Vegeta&on's  Rela&onship  to  Floods  

10  

Basal  Area  of  Three  most  abundant  pioneer  trees  in  semiarid  riparian  zone  

Stromberg  et  al.  2010  collected  data  from  San  Pedro  River  basin  in  both  wet  and  dry  seasons  Younger  plants  present  in  areas  of  higher  intensity  floods,  dry  sites  have  more  exo&cs  than  na&ves.     11  

Populus  fremon-i    Fremont  coSonwood  

(hSp://www.fireflyforest.com/flowers/2182/populus-­‐fremon&i-­‐fremont-­‐coSonwood/)  

Salix  gooddingii    Goodding  Willow  

(hSp://www.mswn.com/plants/database/plant/salix-­‐gooddingii/)  

Tamarix  sp.    Salt  Cedar  

(hSp://www.streamwebs.org/invasive-­‐species-­‐list/saltcedar-­‐tamarix-­‐ramosissima)  

Na&ves  to  SW  USA  

Invasive  to  SW  USA  

Three  Common  Woody  Species  of  the  Riparian  Environments  in  the  SW  USA  

12  

Shi]s  in  Vegeta&on  Type  

Stromberg  et  al.  2010   13  

Droughts  

Drier  summers  Decreased  flow      

Projected  to  con&nue  to  increase  in  severity.    

14  

Future  Drought  Projec&ons  

Hirabayahi  et  al.  2008  15  

•  Stream  water  sources  threatened:  – Snow  pack  dependent  – Ground  water/runoff  dependent  

16  

Perry  et  al.  2013  •  Will  posi&ve  effects  of  climate  change  on  riparian  vegeta&on  offset  nega&ve  effects?  

•  Increased  CO2  (+)  •  Increased  Water  Stress  (-­‐)  

17  

Perry  et  al.  2013  Methods  •  five  of  the  most  abundant  western  United  States  woody  species:  

•   Two  na&ves  (Populus  deltoides  spp.  monilifera,  Salix  exigua)  

•  Three  exo&c  (Elaeagnus  angus-folia,  Tamarix  spp.,  Ulmus  pumila).    

•  Grown  in  a  CO2-­‐controlled  glasshouse    •  Different  water-­‐table  decline  rates  to  test  the  species  response  to  drought  under  current  and  increased  CO2  concentra&ons.    

18  

Results  of  CO2  and  Water  Decline  

•  Elevated  [CO2]  increased  mean  total  biomass  by  15%    

•  faster  water-­‐table  decline  rates  on  seedling  biomass  (70–97%)    

•  Hindered  na&ves  more  than  exo&cs    

Perry  et  al.  2013   19  

Model  of  direct  and  indirect  effects  of  climate  change  on  flow  regime  

Tillmann  and  Siemann  2011  

20  

•  Riparian  vegeta&on  succession  is  an  ecological  feedback  to  climate  change  

CO2  Concentra&ons  

Flow  Regime  Change  

Riparian  Vegeta&on    

Weather  PaSerns  

21  

Riparian  vegeta&on  change  is  occurring,  but  how  will  it  con&nue?    

Modeling  22  

Riparian  Succession  Model  

23  

Computer  Based  Modeling      

•  Computer  Aided  Simula&on  Model  for  In-­‐stream  Flow  and  Riparian  vegeta&on  model:  CASiMiR-­‐vegeta&on  model    

•  Modeling  Succession  Phase  vs.  Site  Specific    Features.  

•  Inputs:  grid-­‐based  topography,  max.  annual  discharge  shear  stress,  flood  dura&on  and  mean/base  water  table  eleva&on  files.   Rivaes  et  al.  

2014  24  

Rivaes  et  al.  2014  

25  

CASiMiR-­‐Vegeta&on  Model      

Rivaes  et  al.  2014  

26  

Feedback  to  Climate  Change  Riparian  vegeta&on  will  sequester  

less  carbon  

27  

No  riparian  vegeta&on  to  sequester  carbon  

28  

Woody  Riparian  Vegeta&on  Stores  More  CO2  

Data  from  San  Pedro  River  Basin  March-­‐December  (primary  growing  season)  totals  of  NNE  were  -­‐63,  -­‐212,  and  -­‐233  g  C  m-­‐2  in  the  grassland,  shrubland,  and  woodland,  respec&vely  

29  

Net  Ecosystem  CO2  exchange  based  on  Vegeta&on  Type    ScoS  et  al.  2006  

  30  

Riparian  Vegeta&on's  Power  as  a  Sink  

•  Restoring  and  refores&ng  such  riparian  zones  to  mature  forest  would  increase  carbon  storage  and  improve  water  quality.  

•  The  carbon  deficit  along  57,700  km  headwater  Coastal  Plain  streams  in  North  Carolina  is  equivalent  to    – 25TgC  in  30-­‐m-­‐wide  riparian  buffer  zones    – 50TgC  in  60-­‐m-­‐wide  buffer  zones.    

Rheinhardt  et  al.  2012     31  

Biomass  of  Riparian  Vegeta&on  in  North  Carolina    

Rheinhardt  et  al.  2012      

32  

0  

50  

100  

150  

200  

250  

300  

Mature  Forest   Regenera&ng  Forest   Perennial  Herb   Shrub/Sapling   Annual  Rowcrops  

MgC/ha  

CO2  

33  

Rivers  as  Sources  of  Atmospheric  CO2  

•  Emiqng  97  (+/-­‐32)  TgC  per  year  

•  Posi&vely  correlated  with  annual  precipita&on  

Butman  et  al.  2011  34  

•  Riparian  vegeta&on  succession  is  an  ecological  feedback  to  climate  change  

CO2  Concentra&ons  

Flow  Regime  Change  

Riparian  Vegeta&on    

More  Floods  and  Droughts  

Stress  /  destruc&on  

Geophysical  altera&ons  

35  

Butman,  D.  and  P.A.  Raymond.  2011.  Significant  efflux  of  carbon  dioxide  from  streams  and  rivers  in  the  United  States.  Nature  Geoscience.  16  October  2011.  

Hirabayashi,  Y.,  Kanae,  S.,  Emori,  S.,  Oki,  T.  and  M.  Kimoto.  2008.  Global  projec&ons  of  changing  risks  of  floods  and  droughts  in  a  changing  climate.  Hydrological  Sciences  Journal  53(4)  754-­‐772  

Kernan,  M.  R.,  R.  W.  BaSarbee,  and  Brian  Moss.  2010.  Climate  Change  Impacts  on  Freshwater  Ecosystems.  Chichester,  West  Sussex,  UK:  Wiley-­‐Blackwell,  2010.    

Perry,  L.G.,  Shafroth,  P.B.,  Blumenthal,  D.M.,  Morgan,  J.A.  and  D.R.  LeCain.  2013.  Elevated  CO2  does  not  offset  greater  water  stress  predicted  under  climate  change  for  na&ve  and  exo&c  riparian  plants.  Phytologist  197:  532-­‐543  

Rheinhardt,  R.D.,  Brinson,  M.M.,  Meyer,  G.F.  and  K.H.  Miller.  2012.  Carbon  storage  of  headwater  riparian  zones  in  an  agricultural  landscape.  Carbon  Balance  Manag.  7:4  

Stromberg,  J.C.,  Lite,  S.J.  and  M.D.  Dixon.  2010.  Effects  of  Stream  Flow  PaSerns  on  Riparian  Vegeta&on  of  a  Semiarid  River:  Implica&ons  for  a  Changing  Climate.  River  Research  and  Applica-ons.  26:  712-­‐729  

Tabacchi,  E.,  Correll,  D.L.,  Hauer,  R.,  Pinay,  G.,  Planly-­‐Tabacchi,  A.M.  and  R.C.  Wissmar.  1998.  Development,  Maintenance  and  role  of  riparian  vegeta&on  in  the  river  landscape.  Freshwater  Biology  40,  497-­‐516  

Tillmann,  P.  and  D.  Siemann.  2011.  Climate  Change  Effects  and  Adapta&on  Approaches  in  Freshwater  Aqua&c  and  Riparian  Ecosystems  in  the  North  Pacific  Landscape  Conserva&on  Coopera&ve  Region.  Na-onal  Wildlife  Federa-on  

Rivaes,  R.P.,  Rodrıguez-­‐Gonzalez1,  P.M.,  Ferreira,  M.T.,  Pinheiro,  A.N.,  Poliq,  E.,  Egger  G.,  Garcıa-­‐Arias  A.  and  F.  Frances.  2014.  Modeling  the  Evolu&on  of  Riparian  Woodlands  Facing  Climate  Change  in  Three  European  Rivers  with  Contras&ng  Flow  Regimes.  Ecohydrology  Vol  9.  No.  10  

 

Bibliography  

36  

Ques&ons?  

37