Lithium-ion Capacitor with low footprint sacrificial...

Post on 26-Sep-2020

6 views 0 download

transcript

Lithium-ion Capacitor with low footprint sacrificial material for graphite pre-lithiation

AABC EuropeMainz, January 30th- February 2nd, 2016

1P. Jeżowski, 2O. Crosnier, 2T. Brousse, 1F. Béguin

1ICTE, Poznan University of Technology, Poland

2IMN, University of Nantes, France

POZNAŃ UNIVERSITY OF TECHNOLOGY

Power Sources Group

www.powersourcesgroup.put.poznan.pl

22

Operating principle of an EDLC

K. Naoi in “Electrochemical capacitors: materials, systems and applications”, F. Béguin & E. Frackowiak eds, John Wiley, Weinheim (2013)

3

Operating principle of LiC hybrid Capacitor

2

21 CUE

K. Naoi in “Electrochemical capacitors: materials, systems and applications”, F. Béguin & E. Frackowiak eds, John Wiley, Weinheim (2013)

Compared profiles of symmetric and hybrid capacitors

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-400 -300 -200 -100 0 100 200 300 400

E / V

vs

Li/

Li+

t / s

hybrid

symmetric

Electrolyte 2 mol.L-1 LiTFSI in EC/DMCSimilar mass of electrodes

C. Decaux, F. Béguin, et al, Electrochim. Acta, 86 (2012) 282-2864

1/C = 1/C+ + 1/C-

C+ << C-

C ~ C+0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-400 -300 -200 -100 0 100 200 300 400

U / V

t / s

Hybrid capacitor 157 F/g

Symmetriccapacitor 96 F/g

Hybrid ~ 80 Wh/kgSymmetric ~ 20 Wh/kg

~4 times higher

E = ½ (Umax2- Umin

2) C

Fuji Heavy Industry patents: EP1400996A1 (2002); WO2006112068A1 (2006); US2007/0002524A1 (2007) ; EP1914764A1 (2007); etc

T. Aida, K. Yamada and M. Morita, Electrochem. Solid-State Lett. 9 (2006) A534.

Preloading from lithium auxiliary electrode

In patented/published systems, lithium is used as

auxiliary electrode to pre-dope graphite

To develop a Li-metal free hybrid capacitor

5

Lithiation from composite electrode with irreversible oxide

In case of Li2MoO3 and Li5FeO4, highly irreversible extractionBut requires high potential > 4.7 V vs Li/Li+ causing side reactions

M.S. Park et al, J. Phys. Chem. C 117 (2013) 11471

To use materials from which lithium can be irreversibly extracted at lower

potential

P. Jezowski, K. Fic, O. Crosnier, T. Brousse, F. Béguin,Electrochim. Acta, 206 (2016) 440

7

40% AC, 40% LRO, 15% C65, 5% PTFE1M LiPF6 in EC:DMC

0.06 mV s-1

Implementation of Li5ReO6 (LRO)

1st cycle

2nd cycle

8

8

Effect of SEI formation current

P. Novak et al., J. Electrochem. Soc., 158 (2011) A1478

30

60

90

120

150

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ca

pa

cit

an

ce

/ F

/g

Cycle no. / -

9

Effect of the SEI formation currenton cycle life

30

60

90

120

150

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ca

pa

cit

an

ce

/ F

/g

Cycle number

1

10

100

10 100 1000 10000

En

erg

y W

h/k

g

Power / W/kg

10

LIC_LRO 2.2–4.1 V

EDLC in TEABF4/ACN @ 2.7 V

EDLC in LiPF6/EC:DMC @2.7 V

Ragone plot of the LIC per total mass of electrode materials

P. Jezowski, K. Fic, O. Crosnier, T. Brousse, F. Béguin, J. Mat. Chem. A 4 (2016) 12609

11

Disadvantages of lithiated oxides

• Lithium extraction potential is relatively high

• Di-oxygen may be produced during lithium extraction

• The residual material in the positive electrodereduces its conductivity and consequently power of the system

- Renewable materials from which lithium is extracted atlower potential and which dissolve in the electrolyte

- Materials from which lithium is extracted together withinert gas evolution

12

Implementation of 3,4 -dihydroxybenzonitriledilithium salt (LORG)

Low molecular mass: 147 g mol-1

High theoretical capacity ~ 365 mAh g-1

13

65% LORG, 30% C65, 5% PTFE1M LiPF6 in EC:DMC

0.06 mV s-1

Anodic oxidation of 3,4 -dihydroxybenzonitriledilithium salt (LORG)

14

65% LORG, 30% C65, 5% PTFE1M LiPF6 in EC:DMC

Anodic oxidation of 3,4 -dihydroxybenzonitriledilithium salt (LORG)

15

Graphite

Glassy fiber separator soaked with 1M LiPF6

(in EC:DMC vol.:1:1)40% AC

40% LORG5% Binder 15% C65

Lithium pin as reference

Cell construction

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 50 100 150 200 250 300 350 400

Po

ten

tial v

s. L

i|Li

+,

Vo

ltag

e /

V

Charge / mAh/g

potential of positive electrode

voltage

potential of negative electrode

Graphite pre-lithiation with LORG

16

0

1

1

2

2

3

3

4

4

5

0 50 100 150 200 250 300 350 400P

ote

ntia

l v

s. L

i|Li

+,

Vo

ltag

e /

V

Charge / mAh/g

0.0

0.1

0.2

0.3

0 50 100 150 200 250 300 350 400

17

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20 25 30Po

ten

tial v

s. L

i|Li

+,

Vo

ltag

e

/V

Time / min

0.25 A/g

0.0

1.0

2.0

3.0

4.0

5.0

0 2 4 6 8 10 12 14

Po

ten

tial v

s. L

i|Li

+,

Vo

ltag

e

/V

Time / min

0.50 A/g

0.0

1.0

2.0

3.0

4.0

5.0

0 2 4 6 8 10

Po

ten

tial v

s. L

i|Li

+,

Vo

ltag

e

/V

Time / min

0.65 A/g

positive electrode

voltage

negative electrode

Charge/discharge of LORG-based LIC (2.2 – 4.0 V)

18

30

50

70

90

110

130

150

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ca

pa

cita

nc

e /

F/g

Cycle number

0

10

20

30

40

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ca

pa

cit

an

ce

/ F

/g

Cycle number

100

110

120

130

140

150

0 50 100 150 200 250 30030

35

40

45

50

0 50 100 150 200 250 300

Cycle-life of LORG-based LIC (2.2 – 4.0 V)

Stable performance

19

State of the cell after conditioning

After cell conditioning, mass of the positive electrode reduced by 34%

- Color of solution

turned to orange

- White separator after

extraction

Ex

trac

tion

in m

ethan

ol

Separator aftercell conditioning

20

Mass spectrum of extract

Extract from separator3,4 -dihydroxybenzonitrile M - 1

21

Ragone plot of the LIC based on LORG per total mass of electrode materials

1

10

100

10 100 1000 10000

Sp

ec

ific

en

erg

y /

Wh

/kg

Specific power / W/kg

1

10

100

10 100 1000 10000

Sp

ec

ific

en

erg

y/

Wh

/kg

Specific power / W/kg

LIC_LRO 2.2–4.1 V

EDLC in LiPF6/EC:DMC @2.7 V

LIC_LORG 2.2–4.0 V

EDLC in TEABF4/ACN @ 2.7 V

22

20% L-Cap, 60% AC, 15% C65, 5% PTFE1M LiPF6 in EC:DMC

New high capacity material (H-Cap)

0.06 mV s-1 C/20

Irreversible capacity > 1000 mAh g-1

23

Graphite

Glassy fiber separator soaked with 1M LiPF6

(in EC:DMC vol.:1:1)60% AC

20% H-CAP5% Binder 15% C65

Lithium pin as reference

Cell with H-Cap

24

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 100 200 300 400 500

Po

ten

tia

l v

s. L

i/Li

+,

Vo

lta

ge

/

V

Charge / mAh/g

SEI formation @ C and graphite lithiation @ C/20

Positive

Cell

Negative

25

Li extraction from H-CAP

PTFE

AC

H-CAP/AC electrode (before extraction)

AC

AC

H-CAP/AC electrode (after extraction)

26

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 5 10 15 20 25 30Po

ten

tial v

s. L

i/Li

+,

Vo

ltga

e/

V

time / min

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 2 4 6 8 10 12P

ote

ntia

l v

s. L

i/Li

+,

Vo

ltag

e/

Vtime / min

0.25 A/g 0.50 A/gpositive electrode

voltage

negative electrode

Charge/discharge of H-CAP LIC (2.2 – 4.1 V)

27

Pre-lithiation with H-Cap and cycle life of the cell

2828

Ragone plot of the LIC based on LHighCap per total mass of electrode materials

1

10

100

10 100 1000 10000

Sp

ec

ific

en

erg

y /

Wh

/kg

Specific power / W/kg

1

10

100

10 100 1000 10000

Sp

ec

ific

en

erg

y/

Wh

/kg

Specific power / W/kg

LIC_LRO 2.2–4.1 V

EDLC in LiPF6/EC:DMC @2.7 V

LIC_LORG 2.2–4.0 V

EDLC in TEABF4/ACN @ 2.7 V

LIC_LHighCap_2.2–4.1 V

29

Lithium deintercalation from the investigated lithiatedmaterials is fully irreversible

Conclusion

Assembling of LIC cell based on lithiated material + AC positive electrode is simple and does not require metalliclithium auxiliary electrode

The LIC capacitors based on the sacrificial lithium source display excellent cycle life and higher energydensity than EDLCs

With the new high capacity material, the residual massin the positive electrode is very low.

The foundation for Polish Science is acknowledged for

funding the ECOLCAP project in the frame of the

Welcome programme

30

Acknowledgements

Thank you for your attention

31

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150 200 250 300 350 400

Vo

lta

ge

/ V

Charge / mAh g-1

Cell failure

due to gassingAfter 1h

pre-lithiation

Triplex bodyPositiveterminal

Negativeterminal

a)

Pouch cell construction

32

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 100 200 300 400 500

Vo

lta

ge

/ V

Charge / mAh g-1

Pouch cell construction with dead space

First stage LiC6 intercalation compound

reached