M. Zagermann - The Backreaction of Localized Sources and de Sitter Vacua

Post on 27-Jun-2015

469 views 0 download

Tags:

description

The SEENET-MTP Workshop JW2011 Scientific and Human Legacy of Julius Wess 27-28 August 2011, Donji Milanovac, Serbia

transcript

The Backreaction of Localized Sources and de Sitter Vacua

Marco Zagermann(Leibniz Universität Hannover & QUEST)

Donji Milanovac, August 29, 2011

Montag, 29. August 2011

Based on:

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ, w. i. p. Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2011)Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2010)

Wrase, MZ (2010)Caviezel, Wrase, MZ (2009)

Caviezel, Koerber, Körs, Lüst, Wrase, MZ (2008) Caviezel, Koerber, Körs, Lüst, Tsimpis, MZ (2008)

As well as

Montag, 29. August 2011

Outline

1. Smearing D-branes and O-planes

2. Classical de Sitter vacua

3. Smearing in the BPS-case I

4. Smearing in the BPS-case II

5. Smearing in the non-BPS case

6. Conclusions

Montag, 29. August 2011

1. Smearing D-branes and O-planes

Montag, 29. August 2011

D-branes & O-planes are important ingredients in phenomenologically realistic type II compactifications:

Montag, 29. August 2011

D-branes & O-planes are important ingredients in phenomenologically realistic type II compactifications:

D-brane O-plane

T > 0 T < 0Tension:Montag, 29. August 2011

D-branes & O-planes are important ingredients in phenomenologically realistic type II compactifications:

E.g.

• Chiral matter

Montag, 29. August 2011

D-branes & O-planes are important ingredients in phenomenologically realistic type II compactifications:

E.g.

• Chiral matter

• Supersymmetry breaking

Montag, 29. August 2011

D-branes & O-planes are important ingredients in phenomenologically realistic type II compactifications:

...

E.g.

• Moduli stabilization

• Chiral matter

• Supersymmetry breaking

( →Tadpole cancellation, non-pert. effects, etc.)

Montag, 29. August 2011

But: Dp-branes and Op-planes...

• ... have mass

→ Backreaction on metric (e.g. warp factor)

Montag, 29. August 2011

But: Dp-branes and Op-planes...

• ... have mass

• ... carry RR-charge

→ Backreaction on metric (e.g. warp factor)

→ Source RR-potentials

Montag, 29. August 2011

But: Dp-branes and Op-planes...

• ... have mass

• ... carry RR-charge

• ... couple to the dilaton

→ Backreaction on metric (e.g. warp factor)

→ Source RR-potentials

→ Nontrivial dilaton profile (except for p = 3)

Montag, 29. August 2011

x

Profile of warp factor, dilaton or RR-pot.

D-brane or O-plane

Montag, 29. August 2011

This backreaction is absent if all brane masses and charges are cancelled locally by putting the right number of D-branes on top of O-planes

Montag, 29. August 2011

This backreaction is absent if all brane masses and charges are cancelled locally by putting the right number of D-branes on top of O-planes

O6

2 D6

Montag, 29. August 2011

This backreaction is absent if all brane masses and charges are cancelled locally by putting the right number of D-branes on top of O-planes

Montag, 29. August 2011

This backreaction is absent if all brane masses and charges are cancelled locally by putting the right number of D-branes on top of O-planes

Montag, 29. August 2011

In all other cases:

• take backreaction into account

or

• make sure it can be neglected

Montag, 29. August 2011

A common approach:

Take backreaction into account at most in an averaged or integrated sense

Montag, 29. August 2011

Example: Tadpole cancellation with D3/O3:

Locally: dF5 = H3 ∧ F3 − µ3δ6(O3/D3)

→ Nontrivial C4 - profile → complicated

Montag, 29. August 2011

Example: Tadpole cancellation with D3/O3:

Locally:

Globally:

dF5 = H3 ∧ F3 − µ3δ6(O3/D3)

0 =�M(6) H3 ∧ F3 − µ3

�NO3 − 1

4ND3

→ Nontrivial C4 - profile → complicated

Instead:

Montag, 29. August 2011

Example: Tadpole cancellation with D3/O3:

Locally:

Globally:

dF5 = H3 ∧ F3 − µ3δ6(O3/D3)

0 =�M(6) H3 ∧ F3 − µ3

�NO3 − 1

4ND3

→ Global cancellation of tadpole by choosing appropriate flux & brane #‘s

→ Nontrivial C4 - profile → complicated

F5

Instead:

Montag, 29. August 2011

Example: Tadpole cancellation with D3/O3:

Locally:

Globally:

dF5 = H3 ∧ F3 − µ3δ6(O3/D3)

0 =�M(6) H3 ∧ F3 − µ3

�NO3 − 1

4ND3

→ Global cancellation of tadpole by choosing appropriate flux & brane #‘s

But neglection of precise - profile

→ Nontrivial C4 - profile → complicated

F5

C4

Instead:

Montag, 29. August 2011

At the level of the 10D eoms, this averaging is often implemented by “smearing” the local brane sources:

Montag, 29. August 2011

At the level of the 10D eoms, this averaging is often implemented by “smearing” the local brane sources:

Localized brane source “Smeared” brane source

Montag, 29. August 2011

At the level of the 10D eoms, this averaging is often implemented by “smearing” the local brane sources:

Localized brane source

x

ρ(x)

x

x

ρ(x)

x

“Smeared” brane source

Montag, 29. August 2011

Mathematically: δ → const.

(More generally: δ → smooth function)

Montag, 29. August 2011

Mathematically: δ → const.

(More generally: δ → smooth function)

→ Nice simplification: Warp factor, dilaton and certain RR-potentials (e.g. ) may often be assumed const.C4

Montag, 29. August 2011

Mathematically: δ → const.

(More generally: δ → smooth function)

→ Construction of many interesting flux backgrounds as explicit solutions to the 10D (smeared) eoms.

→ Nice simplification: Warp factor, dilaton and certain RR-potentials (e.g. ) may often be assumed const.

Early work, e.g.: Acharya, Benini, Valandro (2006)Grana, Minasian, Petrini, Tomasiello (2006) Koerber, Lüst, Tsimpis (2008)

C4

Montag, 29. August 2011

Smearing also brings a welcome simplification to dimensional reduction:

Montag, 29. August 2011

Smearing also brings a welcome simplification to dimensional reduction:

For compactifications on group or coset manifolds(incl. (twisted) tori, spheres) without brane sources, the restriction to the left-invariant modes yields a consistent truncation.

Montag, 29. August 2011

Smearing also brings a welcome simplification to dimensional reduction:

For compactifications on group or coset manifolds(incl. (twisted) tori, spheres) without brane sources, the restriction to the left-invariant modes yields a consistent truncation.

On a torus this corresponds to keeping only the constant Fourier modes:

φ(x, y) =�∞

n=0 φn(x)einy −→ φ0(x)

Montag, 29. August 2011

Smearing also brings a welcome simplification to dimensional reduction:

For compactifications on group or coset manifolds(incl. (twisted) tori, spheres) without brane sources, the restriction to the left-invariant modes yields a consistent truncation.

Remains valid in presence of brane-like sources if these are suitably smeared. E.g. Grana, Minasian, Petrini, Tomasiello (2006)

Caviezel, Koerber, Körs, Lüst, Tsimpis, MZ (2008)Cassani, Kashani-Poor (2009)

Montag, 29. August 2011

Gauged SUGRA theories obtained from (twisted) torus orientifolds make implicit use of such a smearing

In particular:

E.g. Angelantonj, Ferrara, Trigiante (2003)Derendinger, Kounnas, Petropoulos, Zwirner (2004)

Roest (2004) + ...

Montag, 29. August 2011

Smearing D-branes and O-planes is a commonly employed simplification to obtain explicit 10D flux compactifications or consistently truncated 4D

Summary:

Leff

Montag, 29. August 2011

Smearing D-branes and O-planes is a commonly employed simplification to obtain explicit 10D flux compactifications or consistently truncated 4D

It takes into account some brane backreaction in an averaged sense, but ignores local backreaction on warp factor, dilaton or certain RR-potentials

Summary:

Leff

Montag, 29. August 2011

Smearing D-branes and O-planes is a commonly employed simplification to obtain explicit 10D flux compactifications or consistently truncated 4D

It takes into account some brane backreaction in an averaged sense, but ignores local backreaction on warp factor, dilaton or certain RR-potentials

Question: Is this always a good approximation?

Summary:

Leff

Montag, 29. August 2011

Question seems particularly important for...

Montag, 29. August 2011

2. Classical de Sitter vacua

Montag, 29. August 2011

de Sitter compactifications are hard to buildat leading order in and gs α�

(No comparable problems for Minkowski or AdS)

Montag, 29. August 2011

de Sitter compactifications are hard to buildat leading order in and gs α�

(No comparable problems for Minkowski or AdS)

“No-go” theorems:

E.g.: Gibbons (1984); de Wit, Smit, Hari Dass (1987) Maldacena, Nuñez (2000) Steinhardt, Wesley (2008)

Hertzberg, Kachru, Taylor, Tegmark (2007)Danielsson, Haque,Shiu,Van Riet (2009)Wrase, MZ (2010)

Montag, 29. August 2011

de Sitter compactifications are hard to buildat leading order in and gs α�

(No comparable problems for Minkowski or AdS)

“No-go” theorems:

E.g.: Gibbons (1984); de Wit, Smit, Hari Dass (1987) Maldacena, Nuñez (2000) Steinhardt, Wesley (2008)

Hertzberg, Kachru, Taylor, Tegmark (2007)Danielsson, Haque,Shiu,Van Riet (2009)Wrase, MZ (2010)

Fluxes + D-branesbut no O-planes

Montag, 29. August 2011

de Sitter compactifications are hard to buildat leading order in and gs α�

(No comparable problems for Minkowski or AdS)

“No-go” theorems:

E.g.: Gibbons (1984); de Wit, Smit, Hari Dass (1987) Maldacena, Nuñez (2000) Steinhardt, Wesley (2008)

Hertzberg, Kachru, Taylor, Tegmark (2007)Danielsson, Haque,Shiu,Van Riet (2009)Wrase, MZ (2010)

Fluxes + D-branesbut no O-planes

Fluxes + D-branes + O-planes with

�d6y

�g(6)R(6) ≥ 0

Montag, 29. August 2011

Two approaches:

(i) Go beyond leading order

E.g. non-perturbative quantum corrections → KKLT

Montag, 29. August 2011

Two approaches:

(i) Go beyond leading order

E.g. non-perturbative quantum corrections → KKLT

Hard to build explicit and controlled examples

Montag, 29. August 2011

Two approaches:

(i) Go beyond leading order

E.g. non-perturbative quantum corrections → KKLT

Hard to build explicit and controlled examples

(ii) Work harder at leading order

→ “Classical” de Sitter vacua?

Montag, 29. August 2011

Two approaches:

(i) Go beyond leading order

E.g. non-perturbative quantum corrections → KKLT

Hard to build explicit and controlled examples

(ii) Work harder at leading order

→ “Classical” de Sitter vacua?

Simplest way to evade no-go‘s: O-planes +neg. curvature

Montag, 29. August 2011

Has met with partial success:

4D de Sitter extrema found for certain group/coset spaces that allow for an SU(3)-structure with

Caviezel, Koerber, Körs, Lüst, Wrase, MZ (2008)Flauger, Paban, Robbins, Wrase (2008)

Caviezel, Wrase, MZ (2009)

See also: Haque, Shiu, Underwood, Van Riet (2008)Danielsson, Haque, Shiu, Van Riet (2009)

Andriot, Goi, Minasian, Petrini (2010)Dong, Horn, Silverstein, Torroba (2010)

R(6) < 0

Montag, 29. August 2011

Has met with partial success:

4D de Sitter extrema found for certain group/coset spaces that allow for an SU(3)-structure with

Caviezel, Koerber, Körs, Lüst, Wrase, MZ (2008)Flauger, Paban, Robbins, Wrase (2008)

Caviezel, Wrase, MZ (2009)

See also: Haque, Shiu, Underwood, Van Riet (2008)Danielsson, Haque, Shiu, Van Riet (2009)

Andriot, Goi, Minasian, Petrini (2010)Dong, Horn, Silverstein, Torroba (2010)

R(6) < 0

Explicit uplift to 10D knownDanielsson, Koerber, Van Riet (2010)

Danielsson, Haque, Koerber, Shiu, Van Riet, Wrase (2011)

Montag, 29. August 2011

Examles found so far not yet fully satisfactory:

• All contain at least one tachyon

Montag, 29. August 2011

Examles found so far not yet fully satisfactory:

• All contain at least one tachyon

• Possible issues with flux quantizationDanielsson, Haque, Koerber, Shiu, Van Riet, Wrase (2011)

Montag, 29. August 2011

Examles found so far not yet fully satisfactory:

• All contain at least one tachyon

• Possible issues with flux quantization

• Validity of smearing ? → “Douglas-Kallosh problem”

Danielsson, Haque, Koerber, Shiu, Van Riet, Wrase (2011)

Montag, 29. August 2011

The Douglas-Kallosh problem:Douglas, Kallosh (2010)

Montag, 29. August 2011

The Douglas-Kallosh problem:

Spaces of constant negative curvature require an everywhere negative energy density

In the absence of warping and higher curvature terms:

Douglas, Kallosh (2010)

Montag, 29. August 2011

The Douglas-Kallosh problem:

Spaces of constant negative curvature require an everywhere negative energy density

In the absence of warping and higher curvature terms:

Douglas, Kallosh (2010)

R < 0

Montag, 29. August 2011

The Douglas-Kallosh problem:

Spaces of constant negative curvature require an everywhere negative energy density

In the absence of warping and higher curvature terms:

Douglas, Kallosh (2010)

R < 0

ρ < 0

Montag, 29. August 2011

The Douglas-Kallosh problem:

Spaces of constant negative curvature require an everywhere negative energy density

In the absence of warping and higher curvature terms:

But smeared O-planes can provide precisely that!So where is the problem?

Douglas, Kallosh (2010)

Montag, 29. August 2011

The Douglas-Kallosh problem:

Spaces of constant negative curvature require an everywhere negative energy density

In the absence of warping and higher curvature terms:

But smeared O-planes can provide precisely that!So where is the problem?

True O-planes are not smeared!

Douglas, Kallosh (2010)

Montag, 29. August 2011

The Douglas-Kallosh problem:

Spaces of constant negative curvature require an everywhere negative energy density

In the absence of warping and higher curvature terms:

Douglas, Kallosh (2010)

R < 0

ρ < 0

Montag, 29. August 2011

So how can negative curvature be sustained if O-planes are localized (as they should be)?

Montag, 29. August 2011

So how can negative curvature be sustained if O-planes are localized (as they should be)?

Note: Is a general issue of negative internal curvature, not necessarily related to dS

Montag, 29. August 2011

Possible ways out:

- Everywhere strongly varying warping

(- Or higher curvature terms relevant)

Douglas, Kallosh (2010)

Montag, 29. August 2011

Possible ways out:

- Everywhere strongly varying warping

(- Or higher curvature terms relevant)

Varying warping is automatically induced by localized O-planes and D-branes

Douglas, Kallosh (2010)

`

Montag, 29. August 2011

Possible ways out:

- Everywhere strongly varying warping

(- Or higher curvature terms relevant)

Varying warping is automatically induced by localized O-planes and D-branes

But if it varies strongly everywhere, it is unclear whether this is still well-approximated by the smeared solution with constant warp factor.

Douglas, Kallosh (2010)

`

Montag, 29. August 2011

x

e2A(x)

x

e2A(x)

Localized O-plane with everywhere strongly varying warp factor

Smeared O-plane with constant warp factor

Montag, 29. August 2011

Our question:

How reliable is the smearing procedure in general?

Montag, 29. August 2011

Our question:

How reliable is the smearing procedure in general?

1) Do smeared solutions always have a localized counterpart?

2) If yes, how much do their physical properties differ? (e.g. w.r.t. moduli values, cosmological constant,...)

Montag, 29. August 2011

Our question:

How reliable is the smearing procedure in general?

1) Do smeared solutions always have a localized counterpart?

2) If yes, how much do their physical properties differ? (e.g. w.r.t. moduli values, cosmological constant,...)

For 2), cf. also “warped effective field theory” E.g DeWolfe, Giddings (2002)

Giddings, Maharana (2005)Frey, Maharana (2006)

Koerber, Martucci (2007)Douglas, Torroba (2008)

Shiu, Torroba, Underwood, Douglas (2008)+later papers

Montag, 29. August 2011

3. Smearing in the BPS case I

Montag, 29. August 2011

Need simple toy models where a localized solution is accessible → compare to the smeared solution

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2010,2011)

Montag, 29. August 2011

Prime candidate: Flux compactifications à la GKP

Giddings, Kachru, Polchinski (2001)

= best understood type of flux compactification with backreacting localized sources

Need simple toy models where a localized solution is accessible → compare to the smeared solution

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2010,2011)

Montag, 29. August 2011

Simplest version:

• M(10) = M(4) ×w M(6)

Montag, 29. August 2011

Simplest version:

• O3-planes filling M(4) and pointlike on M(6)

M(10) = M(4) ×w M(6)

Montag, 29. August 2011

Simplest version:

• O3-planes filling M(4) and pointlike on M(6)

• F3 and H3 Flux on M(6)

M(10) = M(4) ×w M(6)

Montag, 29. August 2011

Simplest version:

• O3-planes filling M(4) and pointlike on M(6)

• F3 and H3 Flux on M(6)

M(10) = M(4) ×w M(6)

dF5 = H3 ∧ F3 − µ3δ6(O3/D3)•

Montag, 29. August 2011

•O3

O3

F3

H3

M(6)

F5

and e sourced by fluxes and O3-planes 2A(x)+

Montag, 29. August 2011

Localized case:

ds210 = e2Ads̃24 + e−2Ads̃26

Montag, 29. August 2011

Localized case:

F5 = −(1 + ∗10)e−4A ∗6 dα

ds210 = e2Ads̃24 + e−2Ads̃26

Montag, 29. August 2011

Localized case:

F5 = −(1 + ∗10)e−4A ∗6 dα

ds210 = e2Ads̃24 + e−2Ads̃26

∇̃2(e4A − α) = R̃(4) + e

−6A

���∂(e4A − α)���2

+ 1

2e2A+φ

���F3 + e−φ∗̃6H3

���2

Montag, 29. August 2011

Localized case:

F5 = −(1 + ∗10)e−4A ∗6 dα

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

ds210 = e2Ads̃24 + e−2Ads̃26

∇̃2(e4A − α) = R̃(4) + e

−6A

���∂(e4A − α)���2

+ 1

2e2A+φ

���F3 + e−φ∗̃6H3

���2

Montag, 29. August 2011

Localized case:

F5 = −(1 + ∗10)e−4A ∗6 dα

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

Minkowski ⇔ e4A − α = const.

(BPS-like cond.‘s)

(Λ=0)

ds210 = e2Ads̃24 + e−2Ads̃26

∇̃2(e4A − α) = R̃(4) + e

−6A

���∂(e4A − α)���2

+ 1

2e2A+φ

���F3 + e−φ∗̃6H3

���2

F3 + e−φ∗̃6H3 = 0

Montag, 29. August 2011

Localized case:

F5 = −(1 + ∗10)e−4A ∗6 dα

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

Minkowski ⇔ e4A − α = const.

(BPS-like cond.‘s)

(Λ=0)

Moreover: R̃(6)ij = 0, φ = φ0 = const.

ds210 = e2Ads̃24 + e−2Ads̃26

∇̃2(e4A − α) = R̃(4) + e

−6A

���∂(e4A − α)���2

+ 1

2e2A+φ

���F3 + e−φ∗̃6H3

���2

F3 + e−φ∗̃6H3 = 0

Montag, 29. August 2011

Smeared case:

F5 = −(1 + ∗10)e−4A ∗6 dα

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

Minkowski ⇔ e4A − α = const.

(BPS-like cond.‘s)

(Λ=0)

Moreover: R̃(6)ij = 0, φ = φ0 = const.

ds210 = e2Ads̃24 + e−2Ads̃26

∇̃2(e4A − α) = R̃(4) + e

−6A

���∂(e4A − α)���2

+ 1

2e2A+φ

���F3 + e−φ∗̃6H3

���2

F3 + e−φ∗̃6H3 = 0

Montag, 29. August 2011

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

Minkowski ⇔ e4A − α = const.

(BPS-like cond.‘s)

(Λ=0)

Moreover: R̃(6)ij = 0, φ = φ0 = const.

ds210 = ds̃24 + ds̃26

F5 = −(1 + ∗10)e−4A ∗6 dα

∇̃2(e4A − α) = R̃(4) + e

−6A

���∂(e4A − α)���2

+ 1

2e2A+φ

���F3 + e−φ∗̃6H3

���2

F3 + e−φ∗̃6H3 = 0

Smeared case:

Montag, 29. August 2011

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

Minkowski ⇔ e4A − α = const.

(BPS-like cond.‘s)

(Λ=0)

Moreover: R̃(6)ij = 0, φ = φ0 = const.

ds210 = ds̃24 + ds̃26

F5 = 0

∇̃2(e4A − α) = R̃(4) + e

−6A

���∂(e4A − α)���2

+ 1

2e2A+φ

���F3 + e−φ∗̃6H3

���2

F3 + e−φ∗̃6H3 = 0

Smeared case:

Montag, 29. August 2011

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

Minkowski ⇔ e4A − α = const.

(BPS-like cond.‘s)

(Λ=0)

Moreover: R̃(6)ij = 0, φ = φ0 = const.

ds210 = ds̃24 + ds̃26

F5 = 0

0 = R̃(4) + 1

2eφ���F3 + e

−φ∗̃6H3

���2

F3 + e−φ∗̃6H3 = 0

Smeared case:

Montag, 29. August 2011

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

Minkowski ⇔

(BPS-like cond.)

(Λ=0)

Moreover: R̃(6)ij = 0, φ = φ0 = const.

ds210 = ds̃24 + ds̃26

F5 = 0

0 = R̃(4) + 1

2eφ���F3 + e

−φ∗̃6H3

���2

F3 + e−φ∗̃6H3 = 0

Smeared case:

Montag, 29. August 2011

have a localized Minkowski counterpart with

F3 + e−φ∗̃6H3 = 0

⇒ Smeared Minkowski vacua with BPS-type fluxes,

F3 + e−φ∗̃6H3 = 0

Montag, 29. August 2011

have a localized Minkowski counterpart with

F3 + e−φ∗̃6H3 = 0

⇒ Smeared Minkowski vacua with BPS-type fluxes,

F3 + e−φ∗̃6H3 = 0

ISD flux: fixes complex structure moduli and dilaton

Montag, 29. August 2011

have a localized Minkowski counterpart with

F3 + e−φ∗̃6H3 = 0

⇒ Smeared Minkowski vacua with BPS-type fluxes,

F3 + e−φ∗̃6H3 = 0

ISD flux: fixes complex structure moduli and dilaton

The smeared and localized BPS-solution have these moduli fixed at the same value and have the same

cosmological constant (zero)

Montag, 29. August 2011

At least for these physical quantities the localization effects (warping etc.) cancel out.

The BPS-nature ensures that the smearing is quite harmless.

Montag, 29. August 2011

Intuitive understanding:

O-planes and fluxes are BPS w.r.t. one another

⇒ O-plane charge and mass can be freely distributed without affecting the flux

Montag, 29. August 2011

4. Smearing in the BPS case II

Montag, 29. August 2011

Take smeared GKP-solution with M(6) = T6

and BPS-flux F3 + e−φ∗̃6H3 = 0

Montag, 29. August 2011

Take smeared GKP-solution with M(6) = T6

and BPS-flux F3 + e−φ∗̃6H3 = 0

T-dualize along a circle with H-flux

⇒ IIA compactification on a twisted torus with

F4 -fluxwrapped (and smeared) O4-planes and

Montag, 29. August 2011

Take smeared GKP-solution with M(6) = T6

and BPS-flux F3 + e−φ∗̃6H3 = 0

T-dualize along a circle with H-flux

⇒ IIA compactification on a twisted torus with

F4 -fluxwrapped (and smeared) O4-planes and

⇒ Twisted torus has constant negative curvature !

⇒ Localization of O4 directly addresses DK problem

Montag, 29. August 2011

Constructed the localized solution

Montag, 29. August 2011

Constructed the localized solution

Warping indeed takes care of DK problem

Montag, 29. August 2011

Constructed the localized solution

Warping indeed takes care of DK problem

Integrated internal curvature remains negative:�d6y

�g(10)R(6) =

�g̃(4)

�d6y

�g̃(6)

�− 40

3 (∇̃A)2 + 14e

163 AR̃(6)

�< 0

Montag, 29. August 2011

Constructed the localized solution

Warping indeed takes care of DK problem

Integrated internal curvature remains negative:

Despite the large warping effects, the moduli are stabilized at the same point and with the same cosmological constant as in the smeared case

�d6y

�g(10)R(6) =

�g̃(4)

�d6y

�g̃(6)

�− 40

3 (∇̃A)2 + 14e

163 AR̃(6)

�< 0

Montag, 29. August 2011

Constructed the localized solution

Warping indeed takes care of DK problem

Integrated internal curvature remains negative:

Despite the large warping effects, the moduli are stabilized at the same point and with the same cosmological constant as in the smeared case

→ Consequence of BPS nature

�d6y

�g(10)R(6) =

�g̃(4)

�d6y

�g̃(6)

�− 40

3 (∇̃A)2 + 14e

163 AR̃(6)

�< 0

Montag, 29. August 2011

5. Smearing in the non-BPS case

Montag, 29. August 2011

Recall the smeared GKP solutions:

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

0 = R̃(4) + 1

2eφ���F3 + e

−φ∗̃6H3

���2

Montag, 29. August 2011

Recall the smeared GKP solutions:

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

0 = R̃(4) + 1

2eφ���F3 + e

−φ∗̃6H3

���2

Violating the BPS condition, i.e., assuming

F3 + e−φ∗̃6H3 �= 0

allows for (stable) AdS-solutions, e.g.

AdS4 × S3 × S3

Montag, 29. August 2011

Recall the smeared GKP solutions:

⇒ R̃(4) ≤ 0 (AdS or Minkowski)

0 = R̃(4) + 1

2eφ���F3 + e

−φ∗̃6H3

���2

Violating the BPS condition, i.e., assuming

F3 + e−φ∗̃6H3 �= 0

allows for (stable) AdS-solutions, e.g.

AdS4 × S3 × S3

Need D3-branes instead of O3-planesMontag, 29. August 2011

One can prove: A localized solution does not exist, if the fluxes satisfy the same relation as in the smeared case.

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2010)

Montag, 29. August 2011

One can prove: A localized solution does not exist, if the fluxes satisfy the same relation as in the smeared case.

So, if a localized solution exists, it will probably fix the moduli at different values.

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2010)

Montag, 29. August 2011

One can prove: A localized solution does not exist, if the fluxes satisfy the same relation as in the smeared case.

So, if a localized solution exists, it will probably fix the moduli at different values.

For the analogous smeared non-BPS solution on

one can show that there is no continuous interpolation between the smeared solution and a fully localized counterpart (if it exists at all).

AdS7 × S3

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2010)

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2011)Montag, 29. August 2011

ρ(x)

x

Montag, 29. August 2011

ρ(x)

x

Montag, 29. August 2011

ρ(x)

x

Montag, 29. August 2011

ρ(x)

x

Montag, 29. August 2011

Works for BPS

ρ(x)

x

Montag, 29. August 2011

Only smooth non-BPS solution is the smeared one:

ρ(x)

x

But:

Montag, 29. August 2011

If a localized solution disconnected from the smeared one exists, it must involve non-standard boundary conditions at the D6-brane (divergent H ).3

Moreover:

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2011)

Montag, 29. August 2011

If a localized solution disconnected from the smeared one exists, it must involve non-standard boundary conditions at the D6-brane (divergent H ).

Whether this makes sense is still unclear

3

Cf. also Bena, Grana, Halmagyi (2009)

Moreover:

Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2011)

Montag, 29. August 2011

6. Conclusions

Montag, 29. August 2011

Smearing D-branes and O-planes is a common and helpful simplification

Montag, 29. August 2011

Smearing D-branes and O-planes is a common and helpful simplification

For BPS configurations we found this to be a quite robust approximation

Montag, 29. August 2011

Smearing D-branes and O-planes is a common and helpful simplification

For BPS configurations we found this to be a quite robust approximation

Warp factor resolves the Douglas-Kallosh problemof negatively curved spaces for BPS solutions

Montag, 29. August 2011

Smearing D-branes and O-planes is a common and helpful simplification

For BPS configurations we found this to be a quite robust approximation

Warp factor resolves the Douglas-Kallosh problemof negatively curved spaces for BPS solutions

For non-BPS configuration, the general validity of smearing could not yet (?) be confirmed and raised instead many questions/concerns.

Montag, 29. August 2011

Unfortunately, de Sitter vacua should be non-BPS,so it is still unclear whether smearing makes sense here.

Montag, 29. August 2011

Unfortunately, de Sitter vacua should be non-BPS,so it is still unclear whether smearing makes sense here.

Can we also learn something about brane backreaction in warped throats from this?

Cf. also Bena, Grana, Halmagyi (2009)

Montag, 29. August 2011