Measuring cosmological parameters

Post on 06-Feb-2016

33 views 0 download

description

Measuring cosmological parameters. par movies. Using WMAP3 + SDSS LRGs:. 75%. 21%. 4%. Cmbgg OmOl. 386. 430. 13.8. . C = h = G = k b = q e = 1. Cmbgg OmOl. Particle physics. Standard model parameters:. Required. Cosmology. Optional. How flat is space?. Cmbgg OmOl. closed. - PowerPoint PPT Presentation

transcript

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Measuringcosmologicalparameters

par movies

Cmbgg OmOl

Ordinary Matter5%

Dark Energy72%

Cold Dark Matter23%

Ordinary MatterDark EnergyCold Dark MatterHot Dark MatterPhotonsBudget Deficit

4% 21%

75%Using WMAP3 + SDSS LRGs:

430

386

13.8

Cmbgg OmOl

Stan

dard

mod

el p

aram

eter

s:C

osm

olog

yPa

rticl

e ph

ysic

s

Required

Optional

C = h = G

= kb = q

e = 1

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl How flat is space?

flatclosedopen

Why are we cosmologists so excited?

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl How flat is space?

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl How flat is space? Somewhat.

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl tot=1.003How flat is space?

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

CMB+SN Ia

CMB+LRG

Beth Reid et al, arXiv 0907.1559

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

CMB+LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

CMB+LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

CMB+LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

CMB+LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

CMB+LSS

Planck + SDSS: n=0.008, r=0.012

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

THE FUTUREIt's tough to make predictions, especially about the future. Yogi Berra

4%

75%

21%

Cosmological data

Cosmological Parameters

4%

75%

21%

Cosmological data

Cosmological Parameters

ARE WE DONE?

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

4%

75%

21%

Cosmological data

Fundamental theory ?

Cosmological Parameters

Nature of dark matter?

Nature of dark energy?

Nature of early Universe?

Why these particular values?

4%

75%

21%

Cosmological data

Fundamental theory ?

Cosmological Parameters

Nature of dark matter?

Nature of dark energy?

Nature of early Universe?

Why these particular values?

Map our universe!

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Physics with 21 cm

tomography

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Courtney Peterson Andy

Lutomirski

Tongyan Lin

Adrian Liu

Mike matejek

Chris Williams

T H E O M N I S C O P E R S

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Courtney Peterson Andy

Lutomirski

Tongyan Lin

Adrian Liu

Mike matejek

Chris Williams

Ed Morgan

Joel Villasenor

Jackie Hewitt

T H E O M N I S C O P E R S

Scott Morrison

T H E O M N I S C O P E R S

Scott Morrison

Nevada Sanchez

Henrique Pondé

Oliveira PintoJoe

Lee

Angelica de Oliveira-Costa

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Matias Zaldarriaga

T H E O M N I S C O P E R S

• Foreground modeling 0802.1525• Foreground removal astro-ph/0501081, 0807.3952 0903.4890 • Optimal mapmaking 0909.0001• Automatic calibration Liu et al, in prep• Faster correlation 0805.4414, 0909.0001• Corner turning 0910.1351• Survey design optimization 0802.1710

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

What are we so excited?

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

HistoryCMB

Fore

grou

nd-c

lean

ed W

MA

P m

ap fr

om T

egm

ark,

de

Oliv

eira

-Cos

ta &

Ham

ilton

, ast

ro-p

h/03

0249

6

Our observable universe

LSS

Our observable universe

LSS

The time frontier

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

The scale frontier

Physics of the 21 cm Line:

# of Antennas(Total) 30 dishes 10,000 8,192 16 (4)

# of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0)# of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA

Effective Area (m2) 5.104 7.0.104 1.0.105 ~ 104 1.0.104 1.0.106

Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o

Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’

Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200

Mapping Sensitivity 15mK/(day)1/2

Site India China Netherlands Australia USA/AUS AUS(?)

Year 2007 2007 2007 2008 2008 2015(?)

Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA

96 V crossed Dipoles

GMRT = Giant Metrewave Radio Telescope

Physics of the 21 cm Line:

# of Antennas(Total) 30 dishes 10,000 8,192 16 (4)

# of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0)# of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA

Effective Area (m2) 5.104 7.0.104 1.0.105 ~ 104 1.0.104 1.0.106

Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o

Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’

Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200

Mapping Sensitivity 15mK/(day)1/2

Site India China Netherlands Australia USA/AUS AUS(?)

Year 2007 2007 2007 2008 2008 2015(?)

Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA

96 V crossed Dipoles

21CMA/PaST = Primeval Structure Telescope

Physics of the 21 cm Line:

# of Antennas(Total) 30 dishes 10,000 8,192 16 (4)

# of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0)# of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA

Effective Area (m2) 5.104 7.0.104 1.0.105 ~ 104 1.0.104 1.0.106

Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o

Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’

Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200

Mapping Sensitivity 15mK/(day)1/2

Site India China Netherlands Australia USA/AUS AUS(?)

Year 2007 2007 2007 2008 2008 2015(?)

Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA

96 V crossed Dipoles

LOFAR = Low Frequency ARray

2 Km

100 Km

32 sta.

77 sta. vv

vv

vv

vv

Physics of the 21 cm Line:

# of Antennas(Total) 30 dishes 10,000 8,192 16 (4)

# of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0)# of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA

Effective Area (m2) 5.104 7.0.104 1.0.105 ~ 104 1.0.104 1.0.106

Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o

Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’

Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200

Mapping Sensitivity 15mK/(day)1/2

Site India China Netherlands Australia USA/AUS AUS(?)

Year 2007 2007 2007 2008 2008 2015(?)

Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA

96 V crossed Dipoles

MWA = Murchison Widefield Array

Physics of the 21 cm Line:

# of Antennas(Total) 30 dishes 10,000 8,192 16 (4)

# of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0)# of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA

Effective Area (m2) 5.104 7.0.104 1.0.105 ~ 104 1.0.104 1.0.106

Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o

Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’

Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200

Mapping Sensitivity 15mK/(day)1/2

Site India China Netherlands Australia USA/AUS AUS(?)

Year 2007 2007 2007 2008 2008 2015(?)

Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA

96 V crossed Dipoles

Cas A

3C 392

Cygnus A

PAPER = Precision Array to Probe Epoch of Reionization

Physics of the 21 cm Line:

# of Antennas(Total) 30 dishes 10,000 8,192 16 (4)

# of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0)# of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA

Effective Area (m2) 5.104 7.0.104 1.0.105 ~ 104 1.0.104 1.0.106

Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o

Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’

Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200

Mapping Sensitivity 15mK/(day)1/2

Site India China Netherlands Australia USA/AUS AUS(?)

Year 2007 2007 2007 2008 2008 2015(?)

Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA

96 V crossed Dipoles

SKA = Square Kilometer Array

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Image: FORTE satellite

MWA

PAST/21CMALOFAR GMRTPAPER

SKA ?

21 cm tomography experiments:

Participants: MIT, Harvard, Washington, Berkeley, JPL, NRAO

PI: Jacqueline Hewitt, MIT

LARC: Lunar Array for Radio Cosmology

The Omniscope

MT & Matias Zaldarriaga, arXiv 0805.4414 [astro-ph]

Single-dish telescope:cost A1.35

Sensitivity T (A)-1/2

Interferometer:cost N2 A2

FFTT telescope idea:cost A, ~2

Telescopes as Fourier transformers

How get huge sensitivity at low cost?

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

QuickTime™ and a decompressor

are needed to see this picture.

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010 Tegmark & Zaldarriaga 2008

The sensitivity frontier

Omniscope

LSS

Our observable universe

LSS

Our observable universe

Mao, MT, McQuinn, Zahn & Zaldarriaga 2008

Spatial curvature:WMAP+SDSS: tot= 0.01 Planck: tot= 0.00321cm: tot=0.0002

LSS

Our observable universe

Spectral index running:Planck: =0.00521cm =0.000172-potential: 0.00074-potential: 0.008

Mao, MT, McQuinn, Zahn & Zaldarriaga 2008

LSS

Our observable universe

Mao, MT, McQuinn, Zahn & Zaldarriaga 2008

Neutrino mass:WMAP+SDSS: m <0.3 eV+LyF: m <0.17 eV Oscillations m>0.04 eVFuture lensing: m~0.03 eV21cm: m=0.007 eV