MEMS and Nanotechnology - Technische Universität · PDF fileMEMS and Nanotechnology. JASS...

Post on 07-Feb-2018

215 views 0 download

transcript

JASS 2006St. Petersburg Cornelia Hartmann slide 1

JASS 2006

MEMS and

Nanotechnology

JASS 2006St. Petersburg Cornelia Hartmann slide 2

table of contents

1. introduction2. definition of MEMS & NEMS3. active principles4. types of MEMS5. fabrication6. problems with the fabrication

JASS 2006St. Petersburg Cornelia Hartmann slide 3

progress

1. introduction2. definition of MEMS & NEMS3. active principles4. types of MEMS5. fabrication6. problems with the fabrication

JASS 2006St. Petersburg Cornelia Hartmann slide 4

introduction

The Beginning

In Dec. 1959 Richard Feynman offered a prize of $1,000.

Challenge: build an electrical motor, each side smaller than

164

in≈0.397mm

JASS 2006St. Petersburg Cornelia Hartmann slide 5

introduction

diameter: 381μm

tools used for assembly:

● microscope● sharpened tooth pick● hairs of a fine artist's brush

McLellan's micromotor photographed under a microscope (Caltech Institute Archives)

electrical motor by WilliamMcLellan

JASS 2006St. Petersburg Cornelia Hartmann slide 6

progress1. introduction2. definition of MEMS & NEMS

2.1. What is MEMS?2.2. What is NEMS?2.3. problems with NEMS

3. active principles4. types of MEMS5. fabrication6. problems with the fabrication

JASS 2006St. Petersburg Cornelia Hartmann slide 7

What is MEMS?

MEMS - microelectromechanical systems

transformation of energy:

MEMS mainly move by elastic deformation of their flexible components.

electricitylight

thermal energy...

mechanical motion

JASS 2006St. Petersburg Cornelia Hartmann slide 8

What is MEMS?

Courtesy of Sandia National Laboratories, SUMMiTTM Technologies, www.mems.sandia.gov

spider mite (length: approx. 0.5mm)

JASS 2006St. Petersburg Cornelia Hartmann slide 9

What is NEMS?

NEMS - nanoelectromechanical systems

● similar to MEMS but smaller (nanoscale)● future prospects: ability to measure small displacements and forces at a molecular scale

The border between MEMS and NEMS can hardly be defined: 500nm or 0.5μm ?

JASS 2006St. Petersburg Cornelia Hartmann slide 10

problems with NEMS-technology

It is possible to create structures with only severalnanometers in size, BUT:● nanoscale cantilevers/beams: a considerable big number

of atoms are surface atoms● interference with surrounding molecules● additional physical effects have to be considered

(e. g. increased influence of adhesion)

⇒ just scaling down MEMS layouts does not work!

JASS 2006St. Petersburg Cornelia Hartmann slide 11

problems with NEMS-technology

some examples:

● NEMS can respond to masses of single atoms: sensors could respond to impacts of molecules

● measurment of small deflection/forces also means small signals: difficulty to tell the signals apart from the noise

● adhesion of pieces that operate as capacitive electrodes could induce short circuits

JASS 2006St. Petersburg Cornelia Hartmann slide 12

problems with NEMS-technology

● effects, that are irrelevant to micro devices, have to be considered for nano devices

● new design approaches have to be found ● production and packaging have to take place in an

extremely clean environment

JASS 2006St. Petersburg Cornelia Hartmann slide 13

progress1. introduction2. definition of MEMS & NEMS3. active principles

3.1. thermal transduction3.2. electrostatic transduction 3.3. piezo-resistive effect

4. types of MEMS5. fabrication6. problems with the fabrication

JASS 2006St. Petersburg Cornelia Hartmann slide 14

active principles

thermal transduction

ntdisplaceme no FF b

⇒=

A: cross-sectional areaE: Young's modulusα: thermal coefficient change in length:

Δ l=α⋅l⋅Δ Tblock force :Fb=E⋅A⋅α⋅Δ T

JASS 2006St. Petersburg Cornelia Hartmann slide 15

active principles

thermal transduction

fixed

moveable

vertical motion

bent beam actuator bi-metal actuator

JASS 2006St. Petersburg Cornelia Hartmann slide 16

active principles

advantages & disadvantages of thermal transduction

+ large forces/displacements – large input energies – low frequencies

JASS 2006St. Petersburg Cornelia Hartmann slide 17

active principles

electrostatic transduction

Δ U=−Q xε Δ A

parallel plate movement: Δ xcomb finger movement: Δ A

–ΔA

d

d +Δ x

parallel plate

comb fingers

Δ U=Q Δ xε A

JASS 2006St. Petersburg Cornelia Hartmann slide 18

active principles

electrostatic transduction

comb drives

10μm

75μmparallel

electrodesd

spring elements

JASS 2006St. Petersburg Cornelia Hartmann slide 19

active principles

advantages & disadvantages of electrostatic transduction

+ fast response+ easy integration with CMOS– small actuation force

JASS 2006St. Petersburg Cornelia Hartmann slide 20

active principles

piezo-resistive effect

⇒ change in length

connect piezo actuator to voltage source

VlΔ l

JASS 2006St. Petersburg Cornelia Hartmann slide 21

active principles

⇒ potential difference

piezo-resistive effect

compress or expand piezo sensor

F

F

V l−Δ l

JASS 2006St. Petersburg Cornelia Hartmann slide 22

active principles

piezo-resistive effect in polysilicon

gauge factor

thin film of polysilicon (p- or n-doped)isolator (e. g. SiO2, Si3N4)

cantilever/beam/membrane

K=

Δ RRΔ ll

JASS 2006St. Petersburg Cornelia Hartmann slide 23

active principles

piezo-resistive effect in polysilicon

maximum gauge factorp-doped: – 40 n-doped: 20

NA/D≈1019cm-3

TCVD=560°C annealing: 1000...1100°C

JASS 2006St. Petersburg Cornelia Hartmann slide 24

progress

1. introduction2. definition of MEMS & NEMS3. active principles4. types of MEMS

4.1. sensors4.2. actuators

5. fabrication6. problems with the fabrication

JASS 2006St. Petersburg Cornelia Hartmann slide 25

types of MEMS

• sensors - accelerometers - gyroscopes

• actuators - micromirrors - droplet generator - microengines - micropumps

JASS 2006St. Petersburg Cornelia Hartmann slide 26

sensors: accelerometersaccelerometers

● in automotive applications to activate safety systems and to implement vehicle stability systems

● hard disc protection systems● ...

JASS 2006St. Petersburg Cornelia Hartmann slide 27

sensors: accelerometersaccelerometers

a simple MEMS accelerometer is designed as followed:● the proof mass is suspended by one to four silicon beams● basic design and mechanical equivalent:

suspension beams

proof mass

a

x

m

D

K

proof mass

reference frame

JASS 2006St. Petersburg Cornelia Hartmann slide 28

sensors: accelerometersaccelerometers

● acceleration causes displacement of the proof mass● displacement of the proof mass can be measured by

strain gauges in the beams

proof mass with capacitive electrodes

or change in capacitancesuspension beams with strain gauges

JASS 2006St. Petersburg Cornelia Hartmann slide 29

sensors: accelerometersaccelerometers

depending on the change in each capacitance, the three-dimensional acceleration vector can be derived

horizontal accelerationvertical acceleration

JASS 2006St. Petersburg Cornelia Hartmann slide 30

sensors: gyroscopes

gyroscopes

vibratory gyroscopes: transfer of energy between two vibration modes

vibrating mechanical element: proof mass

JASS 2006St. Petersburg Cornelia Hartmann slide 31

sensors: gyroscopes

gyroscopes

Coriolis accelaration ω

a

v

ac=2 ω×v

JASS 2006St. Petersburg Cornelia Hartmann slide 32

sensors: gyroscopes

tuning fork gyroscope

Draper Lab comb drive tuning fork gyroscope

rotation detection by capacitive electrodes under the proof mass

ωa

v

JASS 2006St. Petersburg Cornelia Hartmann slide 33

actuators: micromirrors

micromirrors for phase modulation

16 μm

JASS 2006St. Petersburg Cornelia Hartmann slide 34

actuators: droplet generator

heating element

nozzle

ink reservoir

cooling hole

membrane

JASS 2006St. Petersburg Cornelia Hartmann slide 35

actuators: microengines

microengine with electrostaticly driven combdrives

Courtesy of Sandia National Laboratories, SUMMiTTM Technologies, www.mems.sandia.gov

JASS 2006St. Petersburg Cornelia Hartmann slide 36

actuators: microengines

Courtesy of Sandia National Laboratories, SUMMiTTM Technologies, www.mems.sandia.gov

close-up view on different linkage designes

JASS 2006St. Petersburg Cornelia Hartmann slide 37

actuators: microengines

torque : Mi=Fi⋅r⋅∣sinφi∣

r

φ1

φ2

JASS 2006St. Petersburg Cornelia Hartmann slide 38

actuators: micropumps

micropump with piezo actuators

frequency controlledflow rate

JASS 2006St. Petersburg Cornelia Hartmann slide 39

progress

1. introduction2. definition of MEMS & NEMS3. active principles4. types of MEMS5. fabrication6. problems with the fabrication

JASS 2006St. Petersburg Cornelia Hartmann slide 40

fabrication

epitaxial growth

• thermal oxidation (SiO2-layers)

• chemical vapour deposition• thermal evaporation (metalic layers)• electrolytic deposition

JASS 2006St. Petersburg Cornelia Hartmann slide 41

fabrication

chemical vapour deposition (CVD)

e. g. layer of phosphorus-doped silicon

⇒ n-doped silicon layerSiH4

+ PH3

heated chamber

wafers

JASS 2006St. Petersburg Cornelia Hartmann slide 42

fabrication

minimum structure width: ultraviolet light: 1μme-beam, x-ray: <1μm

plasma etching,KOH-etching (Si),HF-etching (SiO2),...

mask

photo resist

Si, SiO2

ultraviolet light

etching

JASS 2006St. Petersburg Cornelia Hartmann slide 43

fabrication

etching

isotropic

anisotropic

e. g. SiO2 etched by HF

e. g. <100> - Si etched by KOH

e. g. plasma etched Si

JASS 2006St. Petersburg Cornelia Hartmann slide 44

fabrication

silicon wet etching (e. g. with KOH)

selective etching rate:1

30plane}- crystal 111{ Rplane}- crystal 100{ R =

><><

JASS 2006St. Petersburg Cornelia Hartmann slide 45

fabrication

silicon wet etching (e. g. with KOH)

Si + 2 OH– + 2 H2O → SiO2(OH)2 –

– + H2

silicon surface

surface structure of <111> - silicon surface structure of <100> - silicon

JASS 2006St. Petersburg Cornelia Hartmann slide 46

fabrication

reactive ion etching

reactive ion etching: combines chemical and physikal etchinge. g. flour ions react with silicon AND heavy ions impact on the surfaceattention: physical etching

also attacks the pattern

JASS 2006St. Petersburg Cornelia Hartmann slide 47

fabrication

reactive ion etching

JASS 2006St. Petersburg Cornelia Hartmann slide 48

fabrication

reactive ion etching

Si: SiCl4, CCl4, BCl3, SF6

SiO2: C2F6, CHF3

JASS 2006St. Petersburg Cornelia Hartmann slide 49

progress

1. introduction2. definition of MEMS & NEMS3. active principles4. types of MEMS5. fabrication6. problems with the fabrication

JASS 2006St. Petersburg Cornelia Hartmann slide 50

problems with the fabrication

● microscopic contaminations (dust)

● molecular dirt:e. g. oil fog from vacuum pumps

→ adhesion degradation of epitaxial layers

contamination

JASS 2006St. Petersburg Cornelia Hartmann slide 51

problems with the fabrication

KOH-etching: dust particles may result in hillockshillocks

JASS 2006St. Petersburg Cornelia Hartmann slide 52

list of references & picture credits

N. Lobontiu, E. Garcia: Mechanics of Microelectromechanical Systems, Kluwer Academic Publishers, 2005M. Glück: MEMS in der Mikrosystemtechnik, B.G. Teubner Verlag, Wiesbaden 2005M. Elwenspoek, R. Wiegerink: Mechanical Microsensors, Springer-Verlag, Berlin 2001M. Gad-el-Hak (editor): The MEMS Handbook, CRC Press, Boca Raton 2006W. Lachermeier: Das Labor in der Westentasche, Mechatronik F&M, 3/2006http://mems.sandia.govhttp://www.wikipedia.comhttp://physicsweb.orghttp://news.bbc.co.ukhttp://archives.caltech.eduhttp://www.invensense.comhttp://mems.cwru.edu