MGC SenSATIVAx and PathogINDICAtor-KJM...

Post on 07-Jun-2018

215 views 0 download

transcript

SenSATIVAx  and  PathogINDICAtor  Microbial  Detection  in  Medicinal  Cannabis    

   1  

     

   Introduction:  The  Center  for  Disease  Control  estimates  128,000  people  in  the  U.S.  are  hospitalized  annually  due  to  food  borne  illnesses.  As  a  result,  the  detection  of  mold  and  bacteria  on  agricultural  and  pharmaceutical  products  has  become  an  important  safety  consideration.  This  risk  extends  itself  to  medical  Cannabis  and  is  of  particular  concern  with  inhaled,  vaporized,  and  concentrated  Cannabis  products.  Medicinal  Genomics  (MGC)  has  developed  a  novel  PCR  based  assay  for  the  detection  of  pathogenic  microbes  in  Cannabis  materials.  This  process  consists  of  a  proprietary  system  for  DNA  extraction  called  SenSATIVAxTM  and  a  novel  PCR  assay  called  PathogINDICAtorTM.    Method:  SenSATIVAxTM  uses  a  proprietary  technique  based  on  magnetic  particle  separation  for  the  purification  of  both  plant  and  microbial  DNA  from  a  raw  homogenized  sample.  This  approach  allows  for  a  highly  economical,  efficient,  and  automatable  process  where  DNA  can  be  isolated  from  a  single  sample  or  a  large  batch  in  under  30  minutes.  DNA  is  bound  to  magnetic  particles,  which  are  separated  from  the  sample  using  a  magnetic  device.  The  isolated  DNA  can  then  be  purified  and  used  for  down  stream  analysis.    

   

 

 

Figure  1:    Magnetic  particle  separation  showing  nucleic  acid  isolation  and  purification  from  a  complex  biological  sample.  

PathogINDICAtorTM  utilizes  a  novel  PCR  based  assay  that  is  contamination  free  and  provides  an  internal  plant  DNA  control  for  every  reaction.  DNA  detection  is  based  on  a  5’  nuclease  assay  that  directly  measures  the  amount  of  plant  and  microbe  DNA  in  a  given  sample.  This  technique  provides  robust  sensitivity  (detection  down  to  1  molecule),  specificity  (only  targeted  DNA  sequences  are  detected),  and  multiplexing  capability  (multiple  fluorescent  molecules  can  be  combined  in  a  single  tube  to  provide  detection  of  multiple  pathogens  in  a  single  reaction).      

Contamination  from  amplified  products  is  a  major  concern  when  working  with  microbiological  based  techniques.  Both  culture  and  PCR  amplify  the  pathogen  in  order  to  detect  it,  and  usually  require  sterile  technique  or  clean  rooms.  PathogINDICAtorTM  is  able  to  provide  a  contamination  free  technique  through  a  proprietary  process  (continued  on  page  2)     Figure  3:  DREAM  PCR  generates  heavily  methylated  

DNA  that  cannot  survive  AbaSI  digestion.  

= Fluorophore = Quencher

Forward Primer

Reverse Primer

Probe

Polymerization

Probe Degradation

Result

PCR Amplified DNA Fluorescent Signal

+"

Step%1:%Primers%and%probe%%bind%to%target%DNA.%%

Step%2:%PCR%occurs,%primers%are%extended%on%forward%and%reverse%DNA%strands.%%

Step%3:%Probe%is%degraded%as%a%result%of%polymerizaEon%and%fluorescent%signal%is%generated.%%

Step%4:%Target%DNA%is%amplified%and%fluorescent%signal%can%be%measured%and%quanEfied%.%%

Figure  2:  Process  of  a  typical  5'  nuclease  fluorescent  assay.  PathogINDICAtorTM  includes  5’  universal  tails  and  5hmCTP  in  PCR.  

SenSATIVAx  and  PathogINDICAtor  Microbial  Detection  in  Medicinal  Cannabis    

   2  

     

 known  as  DREAM  PCR1,  2,  which  uses  methylation  specific  restriction  enzymes  to  prevent  the  carryover  of  amplified  products  from  one  reaction  to  the  next.      Results:  PathogINDICAtorTM  microbial  detection  assays  use  a  multiplexing  strategy  with  an  internal  plant  DNA  reaction  control  to  ensure  accurate  detection  of  microbial  species  for  every  reaction.  12  Cannabis  genomes  were  decoded  to  select  the  best  plant  control  target  (Figure  4).    

Unlike  other  techniques  this  multiplexing  strategy  verifies  the  performance  of  the  assay  when  detecting  pathogens  resulting  in  an  elimination  of  false  negatives  due  to  reaction  set-­‐up  errors  or  failing  experimental  conditions  (Figure  5).    

PCR  gives  a  consistent  and  reproducible  level  of  detection  over  a  large  dynamic  range  from  1  to  >  1  billion  copies  of  the  target  DNA  with  a  linear  correlation  between  input  amount  and  target  detection  (Figure  6).  

Discussion:  Traditional  microbial  detection  and  quantitative  methods  require  cell  culturing  or  petri  dish  plating.  These  techniques  can  be  dramatically  improved  upon  with  nucleic  acid  based  techniques  such  as  qPCR.  This  is  in  part  due  to  the  rapid  price  decline  in  nucleic  acid  based  methods,  but  also  because  some  pathogenic  microbes  are  difficult  to  culture  and  therefore  evade  detection  with  culture-­‐based  approaches.  Likewise,  many  culturing  techniques  rely  on  culture  media  selectivity.  Culture  media  designed  for  specific  yeast  and  mold  is  not  resistant  to  all  bacterial  growth  or  off-­‐target  fungal  growth.  The  signal  produced  by  culture-­‐based  methods  requires  either  morphological  ascertainment  of  colonies  or  other  tools  to  verify  the  colonies  generated,  are  the  target  organism  of  concern.  The  exclusive  use  of  culture-­‐based  methods  is  complicated  by  the  existence  of  benign  fungicidal  endophytic  microbes  on  Cannabis.    Culture  based  techniques  can  also  be  counterfeited  with  heat  killing  of  the  microorganisms  prior  to  testing.  While  this  reduces  the  viability  of  the  microbes  and  CFU  counts,  it  does  not  remove  the  mycotoxins  or  DNA.  Aflatoxin  B1  requires  clearance  by  a  human  liver  enzyme  potently  inhibited  by  cannabinoids  (CYP3A4)3-­‐5.      In  contrast  to  culture-­‐based  techniques,  nucleic  acid  based  tools  such  as  SenSATIVAxTM  and  PathogINDICAtorTM  have  excellent  species  specificity,  increased  multiplexing  capabilities  based  on  the  use  of  multiple  fluorescent  dye  labeled  molecules,  faster  result  times,  and  an  easily  automated  protocol.        1.   McKernan,  K.J.,  Spangler,  J.,  Helbert,  Y.,  Zhang,  L.  &  Tadigotla,  V.  DREAMing  of  a  patent-­‐free  human  genome  for  clinical  sequencing.  Nat  Biotechnol  31,  884-­‐887  

(2013).  2.   McKernan,  K.J.  et  al.  Expanded  genetic  codes  in  next  generation  sequencing  enable  decontamination  and  mitochondrial  enrichment.  PLoS  One  9,  e96492  (2014).  3.   Langouet,  S.  et  al.  Inhibition  of  CYP1A2  and  CYP3A4  by  oltipraz  results  in  reduction  of  aflatoxin  B1  metabolism  in  human  hepatocytes  in  primary  culture.  Cancer  

research  55,  5574-­‐5579  (1995).  4.   Langouet,  S.  et  al.  Metabolism  of  aflatoxin  B1  by  human  hepatocytes  in  primary  culture.  Advances  in  experimental  medicine  and  biology  387,  439-­‐442  (1996).  5.   Yamaori,  S.,  Ebisawa,  J.,  Okushima,  Y.,  Yamamoto,  I.  &  Watanabe,  K.  Potent  inhibition  of  human  cytochrome  P450  3A  isoforms  by  cannabidiol:  role  of  phenolic  

hydroxyl  groups  in  the  resorcinol  moiety.  Life  sciences  88,  730-­‐736  (2011).    

 

Figure  4:  Sample  containing  plant  and  microbe  DNA.  (Plant  DNA  =  Blue,  Microbial  DNA  =  Pink).  X-­‐axis  is  cycles  (every  1.5  minutes).  X  intercept  is  the  Ct  and  is  used  to  calculate  the  exponential  phase  of  growth.  Y-­‐axis  is  log  10  scale.

Figure  6:  10x  Serial  dilution  of  sample  with  plant  and  pathogen  DNA  present.  (Plant  DNA  =  Blue.  Microbial  DNA  detection  =  Pink)

Figure  5:    Sample  with  no  pathogen  DNA  present.  (Plant  DNA  =  Blue,  Microbial  DNA  detection  =  Pink)