Microreaction€Engineering:...

Post on 04-Aug-2020

1 views 0 download

transcript

Microreaction Engineering:Is small really better?

Jan J. Lerou

Velocys, Inc., Plain City OH www.velocys.com

2

Overview

Background

Fundamentals

Reaction Applications

Scale­up Methodology

Summary

3

BackgroundHistory

•In public domain since 1995

Definition of microstructured reactors•3­dimensional structures from sub­mm to mm range•Main characteristic:

specific surface 10,000 –50,000 m2/m3

Potential benefits•Process intensification•Inherent process safety•Broader reaction conditions incl. explosion regimes•Distributed production•Faster development

4

Background (cont.)

Companies currently moving microchanneltechnology from R&D to commercialization:

•Degussa: running a demonstration project for theevaluation of microreaction technology or DEMiSTM forpropylene epoxidation with hydrogen peroxide

•Clariant: opened its Competence Centre for MicroreactorTechnology (C3MRT) to increase efficiency, improvesafety and reduce the costs of pharmaceutical synthesis­ Continuous pilot plan for the synthesis of azo­pigments

•Axiva developed a process for continuous polymerizationof acrylates (8 kg/h) using micro mixers

•Velocys…

5

~ 0.1­1 mm

Microchannels enablecompact unit operations

with high capacity perunit volume by reducing

transport distances

~ 10­100 mm

Conventional

Characteristicdimension

Enabling Technology

Microchannel

6

Conventional Technology

Conventional Reactors§ Steam Methane

Reformer

§ 20 millionstandard cubicfeet/day

§ ~30m x ~30m x~30m

7

Velocys® Technology Reactors

q MicrochannelSteam MethaneReformer

q Same capacity

q 90% volumereduction

q ~25% reductionin overall plantcosts

8

Microchannel Hardware Performance

< 1 W/cm21­250 W/cm2Boiling

< 1 W/cm21­20 W/cm2ConvectiveConventionalMicrochannel

Intense Heat Transfer Increases Productivity

Fast Reactions Shrink Hardware Volume

1­10 seconds1­100 msGas­phaseConventionalMicrochannel

9

dkNuh ×

=Nu: Nusselt numberh:    Heat transfer coefficientd:    Hydraulic diameterk:    Thermal conductivity

Velocys Heat Exchanger Conventional Heat Exchanger

High surface area/volume ratioHigh heat transfer per volume

Low surface area/volume ratio

Low heat transfer per volume

Heat Transfer in Microchannels

10

inlet outlet

Diffusion across laminar streamlines (100<Re<2000)

Mass Transfer in Microchannels

avgconvection vel

L=τ :  Characteristic convection time

L:  Flow lengthvel:  average laminar velocity

Sh:  Sherwood numberkA:   Mass transfer coefficientd:    Hydraulic diameterD:    Diffusivityd

DShkA×

=:  Characteristic diffusion time

d:  Hydraulic diameterD:  DiffusivityD

ddiff

2)2(=τ

11

Mass Transfer in Microchannels

Velocys technology enhances bothintraparticle and interparticle

mass transfer

Velocys technology enhances bothintraparticle and interparticle

mass transfer

~ 0.002 cm ~ 0.2­2 cm

vs.Velocys Conventional

~ 0.02 cm ~ 0.2 cm

flow

12

Low pressure drop

Laminar flow in microchannels•Orderly flow –less fluctuations

•Laminar Flow

Turbulent Flow

flowh VDfLP µ)(=

Turbulent flow• Random flow –more fluctuations

•75.175.025.0)( VDf

LP

h ρµ=∆

flow

(Blasius friction factor)

13

0

0.5

1

1.5

2

0 10 20 30 40 50Flow (SLPM)

Pres

sure

 Dro

p (p

si)

Experimental DPPredicted DP

Pressure Drop Case Study

48 channel deviceN2, ambientFlowtot = 40 SLPM40”x 0.035”x 0.160”Velocity = 4.2 m/sRe = 391DP = 1.47 psig (model)

DP = 1.51 psig(experimental)

14

Design for Reaction Applications

Design for Constraints•Pressure Drop•Temperature / Materials

Tailor Catalyst Form•Match kinetics, heat removal, and pressure drop

Select Thermal Management Method•Convective heat transfer•Phase change•Chemical reaction

15

Conventional Catalyst TechnologyPowders for stirred tank or fluidized bed applications

Extrudates for fixed­bed applications

Monoliths for gas purification applications

16

Catalysts for Microchannel Reactors

Porous Metallic Felts

~0.05­0.1 cm

Microchannel Walls

Metallic Foams

Metallic Foils

Metallic Fins

17

Catalyst Selection Strategy forMicrochannel Reactors

kineticsslow fast

Pressure drop and dT allowable

high

low Wall coatWall coatFin coatFin coat

Flow­byengineeredstructures

Flow­byengineeredstructures

Flow­throughengineeredstructures

Flow­throughengineeredstructures

PackedchannelsPackedchannels

18

Endothermic Reaction Examples:Tailor flux and thermal profile

airfuel

reactantexhaustproduct

• Add heat by adjacent exothermic reaction• Add heat by convective heat transfer• Add heat by phase change

19

Thermal Performance:Endothermic Steam Reforming

SMR Response

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Distance

Com

bust

ion 

Wal

l Axi

al H

eat

Flux

 (W/c

m^2

)

SMR

 Axi

al G

as T

empe

ratu

re (C

)

Legend: Temperature Heat Flux

20

High Heat Transfer to AchieveTemperature Uniformity

Temperature profile downtypical Fischer­Tropsch fixed

bed reactor∆ T 25 C

Temperature profile downfixed bed Fischer­Tropsch

microchannel∆ T 2 C

21

Velocys Technology Applications

Reactions

Methane Reforming Fischer­Tropsch

Oxidation Methanol

Dehydrogenation Reactive­Distillation

Separations

Thermal swing adsorption Distillation

Mixing

Emulsions

Heat Exchange

Compact Heat Exchangers LNG

22

Scale­up

q Manufacturable and Cost Effective Design

q Sufficient Flow Distribution

q Robust Operation

q Integration with Commercial Plants

23

Velocys Scale­up Methodology

Full­scaleReactor

CELL

Cell•Internal channel dimensions same as

commercial chemical processor•Number of channels increase;

size of channels does not

Multi­Cell•Many channels•10­100 lb/hr

Full­Scale•>1000 channels•1000­5000 lb/hr

Full­Scale Reactor is the basicbuilding block of a commercialplant

Gas flow

MULTI

CELL

24

Commercial Microchannel Reactor:Summary for Hydrogen Generation

Productivity•1MM SCFD H2 per reactor

Size•~0.6 m x 0.8 m x 0.6 m•2 tons•>5000 channels

Streams•Air ~70 ºC•Fuel ~70 ºC•Reactant  ~200 ºC•Product    ~300 ºC•Exhaust    ~300 ºC

Emissions•NOx < 10 ppm•Meets California regulations Eighth­scale DeviceEighth­scale Device

25

Stacking

DiffusionBonding Machining

Shim

Manufacturable Design:Metal thinness creates microchannel dimension

Bonding creates hermetically sealed microchannelsBonding creates hermetically sealed microchannels

Featurecreation

Wall shim without features

26

Device Manufacturing

27

Diffusion Bonding Large Stacks

Protocol

•Time

•Temperature

•Pressure

28

Scale­up Considerations

q Manufacturable and Cost Effective Design

q Sufficient Flow Distribution

q Robust Operation

q Integration with Commercial Plants

29

Tailor Pressure Drop in Flow CircuitsTo achieve sufficient flow distribution

Inlet

1 2 3

max min1

max

100%m mQm

−= ×

2 3

30

Flow Distribution Validation

31

Channel Flow Distribution

Sufficient flow distribution measured in test deviceSufficient flow distribution measured in test device

Run 16: 214.0 SLPM of air

0.0E+00

1.0E­05

2.0E­05

3.0E­05

4.0E­05

5.0E­05

6.0E­05

7.0E­05

8.0E­05

9.0E­05

1.0E­04

0 12 24 36 48 60 72

Channel number

Mas

s flo

w ra

te (k

g/s)

Model

Experiment

32

Manifold Model vs. Experiment dP

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 50 100 150 200 250 300Total air flow rate (SLPM)

Inle

t pre

ssur

e (p

sig)

Model

Experimental average

Predicted manifold pressure drop matches experimentsPredicted manifold pressure drop matches experiments

33

Scale­up Considerations

q Manufacturable and Cost Effective Design

q Sufficient Flow Distribution

q Robust Operation

q Integration with Commercial Plants

34

Robust Performance to UpsetsRecovery after combustion lost and catalyst in situ refurbishment

Conditions:3:1 S:C23 atm6 ms CT9000 scfd H2

Reactor performance

­20%

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50

Time on stream since refurbishment (hr)0

2

4

6

8

10

12

CH4 conversion (%)

Select ivit y t o CO (%)

SMR C balance (% change)

840 °C equilibrium conversion

830 °C equilibrium conversion

upset

SMR dP (psid, r ight  axis)

upse t ­  l ost  c ombust i on

35

Scale­up Considerations

q Manufacturable and Cost Effective Design

q Sufficient Flow Distribution

q Robust Operation

q Integration with Commercial Plants

36

Microchannel Reactor Plant Interface

Low­cost standardized reactor assemblies:•5 to 30 full­scale reactors in each assembly•Shop­built fabrication reduces

construction costs and time•Minimizes utility runs to cut

installation costs•Modular for additions

of incremental capacity.

37

Summary

Microchannel technology’s advantages•Tailored thermal profiles•Optimized catalyst performance and form•Enhanced selectivity•Higher productivity•Operation near stoichiometric feed ratio

Model driven design and optimization process

Scale­up principles modeled and validated

38

Contact Information

Dr. Jan J. LerouManager, Experimental OperationsVelocys Inc.7950 Corporate Blvd.Plain City, OH 43064Phone: (614) 733­3300Email: lerou@velocys.com

www.velocys.com