Milankovic Theory and Time Series Analysis Mudelsee M Institute of Meteorology University of Leipzig...

Post on 29-Mar-2015

219 views 3 download

Tags:

transcript

Milankovic Theory and

Time Series Analysis

Mudelsee M

Institute of MeteorologyUniversity of LeipzigGermany

Climate: Statistical analysis

Data (“sample”)

Climate system (“population”, “truth”, “theory”)

Climate: Statistical analysis

Data (“sample”) STATISTICS

Climate system (“population”, “truth”, “theory”)

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), i = 1, ..., n

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), i = 1, ..., nUNI-VARIATE TIME SERIES

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), y(i), i = 1, ..., nBI-VARIATE TIME SERIES

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), y(i), i = 1, ..., nTIME SERIES: DYNAMICS

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), y(i), i = 1, ..., nTIME SERIES: DYNAMICS

[ t(i), x(i), y(i), z(i),..., i = 1 ]TIME SLICE: STATICS

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), y(i), i = 1, ..., nCLIMATE TIME SERIES

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), y(i), i = 1, ..., nCLIMATE TIME SERIES

o uneven time spacing*

Low reso lu tion H igh resolu tionIce coreD irect observations,

A rch ive, sam plingD epth

Sedim ent core Sedim ent core

l( i+1)L ( i )

C lim ateAge, T

docum ents,c lim ate m odel

R ecent P ast

Top Bottom

Arch ive, sam plingEstim ated age, t

d ( i+1)D ( i )

A rch ive, tim e series, t( i )Estim ated age, t

D iffusion

Arch ive, tim e series, t'( i )"U psam pling", t'

"D ow nsam pling", t'

Strong in troduced dependence

N oW eak

D ' ( i )

Mudelsee M (in prep.) Statistical Analysis of Climate Time Series: A Bootstrap Approach. Kluwer.

UNEVEN TIME SPACING

0 2 00 4 00t ( i ) (k a)

0

0 .2

0 .4

d (i )(k a)

0 5 ,0 00 1 0 ,0 00t ( i ) (a B .P .)

1

10

1 00

d (i )(a)

2 ,0 00 6 ,0 00 1 0 ,0 00t ( i ) (a B .P .)

0

10

d (i )(a)

Mudelsee M (in prep.) Statistical Analysis of Climate Time Series: A Bootstrap Approach. Kluwer.

ICE CORE

(Vostok δD)

TREE RINGS

(atmospheric Δ14C)

STALAGMITE

(Qunf Cave δ18O)

UNEVEN TIME SPACING

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), y(i), i = 1, ..., nCLIMATE TIME SERIES

o uneven time spacingo persistence*

Mudelsee M (in prep.) Statistical Analysis of Climate Time Series: A Bootstrap Approach. Kluwer.

PERSISTENCE

Low reso lu tion H igh resolu tionIce coreD irect observations,

A rch ive, sam plingD epth

Sedim ent core Sedim ent core

l( i+1)L ( i )

C lim ateAge, T

docum ents,c lim ate m odel

R ecent P ast

Top Bottom

Arch ive, sam plingEstim ated age, t

d ( i+1)D ( i )

A rch ive, tim e series, t( i )Estim ated age, t

D iffusion

Arch ive, tim e series, t'( i )"U psam pling", t'

"D ow nsam pling", t'

Strong in troduced dependence

N oW eak

D ' ( i )

ICE CORE

(Vostok δD)

TREE RINGS

(atmospheric Δ14C)

STALAGMITE

(Qunf cave δ18O)

PERSISTENCE

Mudelsee M (in prep.) Statistical Analysis of Climate Time Series: A Bootstrap Approach. Kluwer.

-2 0 0 2 0 4 0

D ( t( i)) [‰ ]

-2 0

0

2 0

4 0D( t( i - 1 ))[‰ ]

-3 0 0 3 0

14C (t(i)) [‰ ]

-3 0

0

3 014C( t( i - 1 ))[‰ ]

- 1 0 1

18O ( t( i)) [‰ ]

- 1

0

118O(t(i - 1))[‰ ]

Climate: Statistical analysis:

Time series analysis

Sample: t(i), x(i), y(i), i = 1, ..., nCLIMATE TIME SERIES

o uneven time spacingo persistence

Milankovic theory

Theory: Orbital variations influenceEarth‘s climate.

Milankovic theory

Data: Climate time series

Theory: Orbital variations influenceEarth‘s climate.

Milankovic theory

Data: Climate time seriesTIME SERIES ANALYSIS: TEST

Theory: Orbital variations influenceEarth‘s climate.

Milankovic theory and

time series analysis

Part 1: Spectral analysis

Part 2: Milankovic & paleoclimate —back to the Pliocene

Acknowledgements

Berger A, Berger WH, Grootes P, Haug G, Mangini A, Raymo ME, Sarnthein M, Schulz M, Stattegger K, Tetzlaff G, Tong H, Yao Q, Wunsch C

Alert!

Mudelsee-bias

Part 1: Spectral analysis

Sample: t(i), x(i), y(i), i = 1, ..., n

Simplification: uni-variate, only x(i),equidistance, t(i) = i

Part 1: Spectral analysis

Sample: x(t) Time series

Part 1: Spectral analysis

Sample: x(t) Time series

Population: X(t)

Part 1: Spectral analysis

Sample: x(t) Time series

Population: X(t) Process

Part 1: Spectral analysis:

Process level

X(t)TIME DOMAIN

Part 1: Spectral analysis:

Process level

X(t)TIME DOMAIN

FOURIER TRANSFORMATION: FREQUENCY DOMAIN

Part 1: Spectral analysis:

Process level

X(t) +T

GT(f) = (2π)–1/2∫–T XT(t) e–2πift dt,

XT= X(t), –T ≤ t ≤ +T,0, otherwise.

TIME DOMAIN

FOURIER TRANSFORMATION: FREQUENCY DOMAIN

Part 1: Spectral analysis:

Process level

h(f) = limT→∞ [ E {|GT(f)|2 / (2T)} ]NON-NORMALIZED POWER SPECTRAL DENSITY FUNCTION,

“SPECTRUM”

Part 1: Spectral analysis:

Process level

h(f) = limT→∞ [ E {|GT(f)|2 / (2T)} ]NON-NORMALIZED POWER SPECTRAL DENSITY FUNCTION,

“SPECTRUM”

“ENERGY” (VARIATION) AT SOME FREQUENCY

Part 1: Spectral analysis:

Process level

Discrete spectrum

Harmonic process

Astronomy

0Fre q u e n cy, f

0

h (f)

0Fre q u e n cy, f

0

h (f)

0Fre q u e n cy, f

0

h (f)

Part 1: Spectral analysis:

Process level

Discrete spectrum

Harmonic process

Astronomy

0Fre q u e n cy, f

0

h (f)

0Fre q u e n cy, f

0

h (f)

0Fre q u e n cy, f

0

h (f)

Continuous spectrum

Random process

Climatic noise

Part 1: Spectral analysis:

Process level

Discrete spectrum

Harmonic process

Astronomy

0Fre q u e n cy, f

0

h (f)

0Fre q u e n cy, f

0

h (f)

0Fre q u e n cy, f

0

h (f)

Continuous spectrum

Random process

Climatic noise

Mixed spectrum

Typical climatic

Part 1: Spectral analysis

The task of spectral analysis is to estimate the spectrum.

There exist many estimation techniques.

Part 1: Spectral analysis:

Harmonic regression

X(t) = Σk [Ak cos(2πfk t) + Bk sin(2πfk t)] + ε(t)

HARMONIC PROCESS

Part 1: Spectral analysis:

Harmonic regression

X(t) = Σk [Ak cos(2πfk t) + Bk sin(2πfk t)] + ε(t)

If frequencies fk

known a priori:

Minimize Q = Σi {x(i) – Σk [Ak cos(2πfk t) + Bk sin(2πfk t)]}2

to obtain Ak and Bk.

HARMONIC PROCESS

Part 1: Spectral analysis:

Harmonic regression

X(t) = Σk [Ak cos(2πfk t) + Bk sin(2πfk t)] + ε(t)

If frequencies fk

known a priori:

Minimize Q = Σi {x(i) – Σk [Ak cos(2πfk t) + Bk sin(2πfk t)]}2

to obtain Ak and Bk.

HARMONIC PROCESS

LEAST SQUARES

Part 1: Spectral analysis:

Periodogram

If frequencies fk notknown a priori:

Take least-squaressolutions Ak and Bk, fk = 0, 1/n, 2/n, ..., 1/2,

to calculate P(fk) ~ (Ak)2 + (Bk)2.

Part 1: Spectral analysis:

Periodogram

If frequencies fk notknown a priori:

Take least-squaressolutions Ak and Bk, fk = 0, 1/n, 2/n, ..., 1/2,

to calculate P(fk) ~ (Ak)2 + (Bk)2. PERIODOGRAM

Part 1: Spectral analysis:

Periodogram

If frequencies fk notknown a priori:

Take least-squaressolutions Ak and Bk, fk = 0, 1/n, 2/n, ..., 1/2,

to calculate P(fk) ~ (Ak)2 + (Bk)2.

Where fk ≈ true f P(fk) has a peak.

PERIODOGRAM

Part 1: Spectral analysis:

Periodogram

0 fk

0

P (fk)

1n_ 2

n_ 1

2_

Part 1: Spectral analysis:

Periodogram

Original paper:

Schuster A (1898) On the investigation of hidden periodicities with application to a supposed 26 day period ofmeteorological phenomena.Terrestrial Magnetism 3:13–41.

Part 1: Spectral analysis:

Periodogram

Hypothesis test (significance of periodogram peaks):

Fisher RA (1929) Tests of significance in harmonic analysis.Proceedings of the Royal Society of London, Series A, 125:54–59.

Part 1: Spectral analysis:

Periodogram

A wonderful textbook:

Priestley MB (1981) Spectral Analysis and Time Series.Academic Press, London, 890 pp.

Part 1: Spectral analysis:

Periodogram

Major problem with the periodogram as spectrum estimate:

Relative error of P(fk) = 200% for fk= 0, 1/2,

100% otherwise.

Part 1: Spectral analysis:

Periodogram

0 fk

0

P (fk)

1n_ 2

n_ 1

2_

Part 1: Spectral analysis:

Periodogram

“More lives have been lost looking at the raw periodogram

than by any other action involving time series!”

Tukey JW (1980) Can we predict where ‘time series’ should go next? In: Directions in time series analysis (eds Brillinger DR, Tiao GC). Institute of Mathematical Statistics, Hayward, CA, 1–31.

Part 1: Spectral analysis:

Smoothing

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 t(i)

x(i)

1stSegment

2ndSegment

3rdSegment

WELCH OVERLAPPEDSEGMENT AVERAGING(WOSA)

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 fk

0

h

0 t(i)

x(i)

1stSegment

2ndSegment

3rdSegment

WELCH OVERLAPPEDSEGMENT AVERAGING(WOSA)

ERROR REDUCTION <

√3

Part 1: Spectral analysis:

Smoothing

Tapering: Weight time series

Spectral leakage reduced

(Hanning, Parzen,triangular windows, etc.)

*

Part 1: Spectral analysis:

Smoothing problem

Several segments averaged

Spectrum estimate more accurate :-)

Fewer (n‘ < n) data per segment

Lower frequency resolution :-(

Part 1: Spectral analysis:

Smoothing problem

0 fk

0

h

Part 1: Spectral analysis:

Smoothing problem

Subjective judgement is unavoidable.

Play with parameters and be honest.

Part 1: Spectral analysis:

100-kyr problem

Δt = 1 fk = 0, 1/n, 2/n, ...

Δt = d fk = 0, 1/(n·d), 2/(n ·d), ...Δf = (n·d)–1

Part 1: Spectral analysis:

100-kyr problem

Δt = 1 fk = 0, 1/n, 2/n, ...

Δt = d fk = 0, 1/(n·d), 2/(n ·d), ...Δf = (n·d)–1

[ BW > (n·d)–1 SMOOTHING

]

Part 1: Spectral analysis:

100-kyr problem

n·d ≈ 650 kyr Δf = (650 kyr)–1*

Part 1: Spectral analysis:

100-kyr problem

n·d ≈ 650 kyr Δf = (650 kyr)–1

(100 kyr)–1 ± Δf = (118 kyr)–1 to(87 kyr)–1

*

Part 1: Spectral analysis:

100-kyr problem

n·d ≈ 650 kyr Δf = (650 kyr)–1

(100 kyr)–1 ± Δf = (118 kyr)–1 to(87 kyr)–1

[ ± BW wider SMOOTHING

]

*

Part 1: Spectral analysis:

100-kyr problem

The 100-kyr cycle existed not long enough to allow a precise enough frequency estimation.

Part 1: Spectral analysis:

Blackman–Tukey

]

h = Fourier transform of ACV

Part 1: Spectral analysis:

Blackman–Tukey

E [ X(t) · X(t + lag) ]

h = Fourier transform of ACV

Part 1: Spectral analysis:

Blackman–Tukey

PROCESS LEVEL E [ X(t) · X(t + lag) ]

h = Fourier transform of ACV

Part 1: Spectral analysis:

Blackman–Tukey

PROCESS LEVEL E [ X(t) · X(t + lag) ]

h = Fourier transform of ACV

SAMPLE Σ [ x(t) · x(t + lag) ] / n

h = Fourier transform of ACV

Part 1: Spectral analysis:

Blackman–Tukey

Fast Fourier Transform:

Cooley JW, Tukey JW (1965) An algorithm for the machine calculationof complex Fourier series.Mathematics of Computation 19:297–301.

Part 1: Spectral analysis:

Blackman–Tukey

Some paleoclimate papers:

Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth's orbit: Pacemaker of the ice ages. Science 194:1121–1132.

Imbrie J Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, PisiasNG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of themarine δ18O record. In: Milankovitch and Climate (eds Berger A,Imbrie J, Hays J, Kukla G, Saltzman B), Reidel, Dordrecht,269–305.

Part 1: Spectral analysis:

Blackman–Tukey

Ruddiman WF, Raymo M, McIntyre A (1986) Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth and Planetary Science Letters 80:117–129.

Tiedemann R, Sarnthein M, Shackleton NJ (1994) Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9:619–638.

Part 1: Spectral analysis:

Multitaper Method (MTM)

Spectral estimation with optimal tapering

Thomson DJ (1982) Spectrum estimation and harmonic analysis.Proceedings of the IEEE 70:1055–1096.

MINIMAL DEPENDENCE AMONG AVERAGED INDIVIDUAL SPECTRA

MINIMAL ESTIMATION ERROR

Part 1: Spectral analysis:

Multitaper Method (MTM)

0 500 1000

Age t ( i ) [kyr]

2223242526O bliqu ity

x ( i ) [°]

-0 .08-0 .0400.040.08

Taper va lue

0 500 1000

Age t ( i ) [kyr]

-0 .08

0

0.08Tapered,detrendedx( i ) [°]

0 500 1000

Age t ( i ) [kyr]0 0.02 0.04

Frequency fk [kyr-1 ]

04080120160 M ultitaper

spectrum

k = 0

k = 1

k = 1

Average(k = 0 , 1)

a b

c d (41 kyr)-1

Part 1: Spectral analysis:

Multitaper Method (MTM)

0 500 1000

Age t ( i ) [kyr]

2223242526O bliqu ity

x ( i ) [°]

-0 .08-0 .0400.040.08

Taper va lue

0 500 1000

Age t ( i ) [kyr]

-0 .08

0

0.08Tapered,detrendedx( i ) [°]

0 500 1000

Age t ( i ) [kyr]0 0.02 0.04

Frequency fk [kyr-1 ]

04080120160 M ultitaper

spectrum

k = 0

k = 1

k = 1

Average(k = 0 , 1)

a b

c d (41 kyr)-1

[ BETTER: DIRECTLY VIA ASTRONOMY EQS.]

Part 1: Spectral analysis:

Multitaper Method (MTM)

Some paleoclimate papers:

Park J, Herbert TD (1987) Hunting for paleoclimatic periodicities in a geologic time series with an uncertain time scale. Journal ofGeophysical Research 92:14027–14040.

Thomson DJ (1990) Quadratic-inverse spectrum estimates: Applications to palaeoclimatology. Philosophical Transactions of the RoyalSociety of London, Series A 332:539–597.

Berger A, Melice JL, Hinnov L (1991) A strategy for frequency spectra ofQuaternary climate records. Climate Dynamics 5:227–240.

Part 1: Spectral analysis:

Further points

Uneven time spacing

Part 1: Spectral analysis:

Further points

Uneven time spacingUse X(t) = Σk [Ak cos(2πfk t) + Bk sin(2πfk t)] + ε(t)

Lomb NR (1976) Least-squares frequency analysis of unequallyspaced data. Astrophysics and Space Science 39:447–462.

Scargle JD (1982) Studies in astronomical time series analysis. II.Statistical aspects of spectral analysis of unevenly spaceddata. The Astrophysical Journal 263:835–853.

HARMONIC PROCESS

Part 1: Spectral analysis:

Further points

Red noise

0Fre q u e n cy, f

0

h (f) PERSISTENCE

Part 1: Spectral analysis:

Further points

Red noise

AR1 process for uneven spacing:

Robinson PM (1977) Estimation of a time series model from unequally spaced data. Stochastic Processes and their Applications 6:9–24.

0Fre q u e n cy, f

0

h (f) PERSISTENCE

Part 1: Spectral analysis:

Further points

Aliasing

0Fre qu e n cy, f

0

h (f)

12d_

Part 1: Spectral analysis:

Further points

Aliasing

Safeguards: o uneven spacing (Priestley 1981)

o for marine records: bioturbationPestiaux P, Berger A (1984) In: Milankovitch

and Climate, 493–510.

0Fre qu e n cy, f

0

h (f)

12d_

Part 1: Spectral analysis:

Further points

Running window Fourier Transform

0 t(i)

x(i)

Priestley MB (1996) Wavelets and time-dependent spectral analysis.Journal of Time Series Analysis 17:85–103.

Part 1: Spectral analysis:

Further points

Detrending*

Part 1: Spectral analysis:

Further points

Errors in t(i): tuned dating,absolute dating,stratigraphy.

Errors in x(i): measurement error,proxy error,interpolation error.

Part 1: Spectral analysis:

Further points

Bi-variate spectral analysis

For example: x = marine δ18Oy = insolation

Part 1: Spectral analysis:

Further points

Higher-order spectra (bi-spectra, ...)

Part 1: Spectral analysis:

Further points

Etc., etc.

Part 2: Milankovic & paleoclimate

Part 2: Milankovic & paleoclimate

Less ice /w arm er

M ore ice /co lder

0 1 2 3 4A ge t (i ) [M yr]

5

4

3

2

1 18O [‰ ]benth ic

OD P 659

Part 2: Milankovic & paleoclimate

Less ice /w arm er

M ore ice /co lder

0 1 2 3 4A ge t (i ) [M yr]

5

4

3

2

1 18O [‰ ]benth ic

OD P 659Northern Hemisphere Glaciation

NHG

Part 2: Milankovic & paleoclimate

Less ice /w arm er

M ore ice /co lder

0 1 2 3 4A ge t (i ) [M yr]

5

4

3

2

1 18O [‰ ]benth ic

OD P 659Northern Hemisphere Glaciation

NHG

Mid-Pleistocene Transition

Part 2: Milankovic & paleoclimate

Climate transitions, trend

Age t ( i )

X fit(t) x2

x1

t1 t2

Part 2: Milankovic & paleoclimate

Climate transitions, trend

x1, t < t1,Xfit(t) = x2, t > t2,

x1+ (t−t1) ·(x2−x1)/(t2−t1), t1 ≤ t ≤ t2.

Part 2: Milankovic & paleoclimate

Climate transitions, trend

x1, t < t1,Xfit(t) = x2, t > t2,

x1+ (t−t1) ·(x2−x1)/(t2−t1), t1 ≤ t ≤ t2.

LEAST SQUARES ESTIMATION

Part 2: Milankovic & paleoclimate

Mid-Pleistocene Transition

Less ice /w arm er

M ore ice /co lder

0 0.5 1 1.5A ge t (i ) [M yr]

5

4

3

2 18O [‰ ]benth ic

OD P 659

M IS 23/24

Part 2: Milankovic & paleoclimate

Mid-Pleistocene Transition

Less ice /w arm er

M ore ice /co lder

0 0.5 1 1.5A ge t (i ) [M yr]

5

4

3

2 18O [‰ ]benth ic

OD P 659

M IS 23/24100 kyr cycle

Part 2: Milankovic & paleoclimate

Mid-Pleistocene Transition

Mudelsee M, Schulz M (1997) Earth and Planetary Science Letters 151:117–123.

DSDP 552DSDP 607ODP 659ODP 677ODP 806

~ size of Barents/Kara Sea ice sheets

Part 2: Milankovic & paleoclimate

NHG

Database: 2–4 Myr, 45 marine δ18O records, 4 temperature records

benthicplanktonic

Mudelsee M, Raymo ME (submitted)

NHG:

Results

2,000 3,000 4,000

3.0

4.0

18 O

(‰

vs

. P

DB

sta

nd

ard

)

3 .0

4 .0

3.0

4.0

2.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

2,000 3,000 4,000Age (kyr )

2 ,000 3,000 4,000

3.0

4.0

2.0

3.0

2.0

3.0

3.0

4.0

3.0

4.0

-1 .0

0.0

0.0

1.0

-2 .0

-1 .0

0.0

-2 .0

-1 .0

-2 .0

-1 .0

-2 .0

-1 .0

-1 .0

0.0

2,000 3,000 4,000Age (kyr )

Mudelsee & Raymo, Figure 1

606 b G .s.

606 b P .w .

607 b

610 b

659 b

662 b

722 b

758 b

806 b

846 b

849 b

925 b

929 b

o

xo

o

o

o

o

o

oo

o o

xo

x

o

o

o

o o

o

o

o

o

o

o

o

o

o

oo

xx

o

o

o

982 b

999 b

1085 b

1143 b

1148 b

572 p

606 p

625 p

758 p

806 p

851 pG .sac.

999 p

x

x

xx

x

x

x

96–100 M 2–M G 2 96–100 M 2–M G 2

High-resolution recordsMudelsee M, Raymo ME (submitted)

2,000 3,000 4,000

3.0

4.0

18 O

(‰

vs

. P

DB

sta

nd

ard

)

3 .0

4 .0

3.0

4.0

2.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

3.0

4.0

2,000 3,000 4,000Age (kyr )

2 ,000 3,000 4,000

3.0

4.0

2.0

3.0

2.0

3.0

3.0

4.0

3.0

4.0

-1 .0

0.0

0.0

1.0

-2 .0

-1 .0

0.0

-2 .0

-1 .0

-2 .0

-1 .0

-2 .0

-1 .0

-1 .0

0.0

2,000 3,000 4,000Age (kyr )

Mudelsee & Raymo, Figure 1

606 b G .s.

606 b P .w .

607 b

610 b

659 b

662 b

722 b

758 b

806 b

846 b

849 b

925 b

929 b

o

xo

o

o

o

o

o

oo

o o

xo

x

o

o

o

o o

o

o

o

o

o

o

o

o

o

oo

xx

o

o

o

982 b

999 b

1085 b

1143 b

1148 b

572 p

606 p

625 p

758 p

806 p

851 pG .sac.

999 p

x

x

xx

x

x

x

96–100 M 2–M G 2 96–100 M 2–M G 2

High-resolution records

NHG:

Results

Mudelsee M, Raymo ME (submitted)

NHG was a slow global climate change (from ~3.6 to 2.4 Myr).

NHG ice volume signal: ~0.4 ‰.

Part 2: Milankovic & paleoclimate

NHG

Milankovic theory and

time series analysis: Conclusions

(1) Spectral analysis estimates thespectrum.

(2) Trend estimation is alsoimportant (climate transitions).

G O O D I E S

Climate transitions: error bars

t1, x1, t2, x2

Time series,size n

{t(i), x*(i)}

{t(i), x(i); i = 1,…, n } {t(i)}

Ramp estimation

t1*, x1*, t2*, x2*

Take standard deviation of simulated ramp

parameters

Simulated time series, x*(i) = ramp + noise

Simulated ramp parameters

Bootstrap errors

STD, PersistenceNoise estimation

Repeat 400 times

NHG amplitudes: temperature2,000 3,000 4,000

20.0

25.0

Tem

pera

ture

(°C

)

1 .0

3 .0

5.0

3.0

5.0

25.0

30.0

2,000 3,000 4,000Age (kyr )

D SDP 572S ST(via ostracoda)

D SDP 607B W T(via M g/C a)

O D P 806B W T(via M g/C a)

O D P 806S ST(via foram s)

96–100 M 2–M G 2

cooling (°C) in ~3,606−2,384 kyr

0.12 ± 0.47

0.62 ± 0.29

1.0 ± 0.5

−0.85 ± 0.17

Mudelsee M, Raymo ME (submitted)

NHG amplitudes: ice volume

Temperature calibration: 18OT/T = −0.234 ± 0.003 ‰/°C (Chen 1994; own error determination)

Salinity calibration: 18OS/T = 0.05 ‰/°C (Whitman and Berger 1992)

DSDP 572 p 18OT = 0.03 ± 0.12 ‰ 18OS = −0.01 ‰ 18OI = 0.34 ± 0.13 ‰

DSDP 607 b 18OT = 0.15 ± 0.07 ‰ 18OS = −0.03 ‰ 18OI = 0.41 ± 0.09 ‰

ODP 806 b 18OT = 0.24 ± 0.12 ‰ 18OS = − 0.05 ‰ 18OI = 0.25 ± 0.13 ‰

ODP 806 p 18OT = −0.20 ± 0.04 ‰ 18OS = 0.04 ‰ 18OI = 0.43 ± 0.06 ‰

(DSDP 1085 b cooling by 1 °C 18OI = 0.35 ‰)

Average 18OI = 0.39 ± 0.04 ‰