Mineralogy 23.10.08(Class1)

Post on 06-Apr-2018

223 views 0 download

transcript

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 1/33

LECTURE OUTLINE

Minerals: Building blocks of rocks

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 2/33

RULE 1: The anions around a cation define a coordination polyhedron.

The best-known example is the silica tetrahedron. The distance between

cations and anions is determined by the sum of their ionic radii. The

ratio of their radii determines the coordination number, or number of 

anions surrounding the cation.

RULE 2: Electrostatic valency principle: The total strength of the valency

bonds that reach an anion from all its neighboring cations is equal to the

charge of the anion.

EXAMPLE:

For example, in olivine, (Mg,Fe)2SiO4, the charge on the Si ion is +4, on Mg

or Fe +2 and on O -2. Since 4 oxygens surround a silicon, there must be

a charge of -1 on each oxygen to be balanced by the Mg and Fe atoms.

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 3/33

RULE 3: Cation coordination polyhedra tend to be linked (share anions) at

corners first, then edges, and faces last of all because of the electrostatic

repulsion between cations. The repulsion is especially great for cations with

large charge and small coordination number, like Si. Silica tetrahedra almostnever link any other way than at their corners.

RULE 4: In a crystal containing different cations, cations with large charge

and small coordination number tend not to share polyhedral elements.

Think of Bowen's Series: among the ferromagnesian minerals, olivine

(isolated tetrahedra) tends to form first, followed by pyroxene (single chains),

amphibole (double chains) and biotite (sheets). The silica tetrahedra don't

link until they have no other choice.

RULE 5: In crystals the number of structurally distinct sites tends to

be small

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 4/33

CN Polyhedron Example

3 Triangle C in Calcite

4 Tetrahedron Si in Quartz

6 Octahedron Mg in Forsterite

8 Cube Ca in Fluorite

12 Dodecahedron Native gold

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 5/33

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 6/33

PACKING OF ATOMS IN CRYSTALS

Most compact lowest porosity Relatively less compact higher porosity 

CUBIC Close Packing :

Spinel(MgAl2O4), Halite(NaCl)HEXAGONAL close packing:

Corundum, ilmenite

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 7/33

Minerals: Building blocks of rocks By definition a mineral is

Naturally occurring

Homogenous solid

Definite chemical

composition

Ordered internal

molecular structure

Inorganic solid

Rock

A solid aggregate of minerals

Granite

Quartz Biotite

Feldspar

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 8/33

C lassification of Minerals

 ± Oxides CHROMITE, CORRUNDUM

 ± Sulfides CHALCOPYRITE, PYRITE

 ± Sulfates GYPSUM

 ± Native Elements GOLD, SILVER 

 ± Carbonates CALCITE, DOLOMITE

 ± Halides GYPSITE, HALITE

 ± Phosphates APATITE,

Minerals are classified on their chemistry, particularly on the anionic elementor polyanionic group of elements that occur in the mineral.

NON-SILICATES

SILICATES

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 9/33

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 10/33

LINKING OF SiO4 TETRAHEDRA

Linking of SIO4 Tetrahedra

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 11/33

Mineral Groups

 ± Silicates ±

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 12/33

LINKING OF SiO4 TETRAHEDRA AND CLEAVAGE

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 13/33

Neso slicate: Olivine- M2SiO4, e.g. Forsterire(Mg2SiO4) 1:4

Si :O ratio

Soro silicate : Epidote - Ca2(Fe+3, Al) Al2(SiO4)(Si2O7)(OH) 2:7

Cyclosilicate: Ber yl - Be3 Al2Si6O18 1:3

Ionosilicate(single): Pyroxene- M2M1Si2O6, e.g. Diopside(CaMgSi2O6) 1:3

Ionosilicate (Double): Amphibole- Tremolite(CaMg5Si8O22(OH)2) 4:11

Phyllosilicate: Mica, Chlorite- e.g. Annite(KFe3 AlSi3O10(OH)2) 2:5

Tectosilicate: Quartz, Feldspar- Albite(Na AlSi3O8) 1:2

SILICATES

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 14/33

The olivine structure is based on isolated SiO4 tetrahedra

(blue) which link chains of (Fe,Mg)O6 octahedra. There

are two octahedral cation sites: M1 (yellow) and M2

(orange). Both sites accomodate Fe2+ and Mg2+ cations

and there is complete disorder of Fe and Mg over the M1

and M2 sites. Olivine is orthorhombic and therefore will

show parallel or symmetric extinction under crossed

polarized light. M1-O distance~2.101 A, M2-O~2.135A.

M1 radius=0.781A, M2 radius=0.812A

Mg(M1)Mg(M2)SiO4

(Forsterite) Mg=0.72A

Fayalite(2Fe2Mg)

Fe=0.78A

Tephroite (2Mn2Mg)

Mn=0.83A

Motecellite (CaMg)

Ca=1.0A

K irschsteinite (CaFeSiO4),

Ni2SiO4

Isomorphous substitutions and speciation of 

orthorhombic (EOLIVINE

NESOSILIC ATE (OLIVINE)

Glaucochroite (CaMnSiO4)

M1= Fe,Mg, Ni; M2 = Ca,Mn

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 15/33

Si

OFe,Mg

STRUCTURE OF OLIVINE

SiO4

Tetrahedra

(Mg,Fe)O6

Octahedra

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 16/33

OLIVINE

GARNET

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 17/33

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 18/33

.

The single chain silicates have a basic structural unit

consisting of linked SiO4 tetrahedra that each share 2of their oxygens in such a way as to build long chains

of SiO4. The basic structural group is thus Si2O6

with an Si:O ratio of 1:3. The most important

inosilicates are the pyroxenes. These have a general

structural formula of: XYZ2O6

where X = Na+, Ca+2, Mn+2, Fe+2, or Mg+2 fillingoctahedral sites called M2

Y = Mn+2, Fe+2, Mg+2 , Al+3, Cr+3, or Ti+4 filling

smaller octahedral sites called M1

Z = Si+4 or  Al+3 in tetrahedral coordination

SINGLE CHAIN SILICATES : THEIR PHYSICAL AND CHEMICAL PROPERTIES

C axis

PyroxenequadrilateralCALCIC GROUP

NON CALCIC

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 19/33

Basal Section with intersecting cleavages at 87-88o

Relationship among the optical and cr ystallographic

planes in the oriented pyroxene cr ystals

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 20/33

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 21/33

Projection along

the C-axis

Structure of AMPHIBOLE

SiO4

tetrahedra

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 22/33

Pyroxene

 Amphibole

CLEAVAGE IN INOSILICATES

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 23/33

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 24/33

Sheet Silicates: the Mica's and

Clay Minerals Mica and clay minerals are P hyllosilicates

 ± Sheet or layered

silicates with ± Two dimensional

polymerization of 

silica tetrahedra

 ± Common structure isa Si205 layer 

sheets of silica tetrahedraSi2O5Phyllosilicates

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 25/33

1-direction

of cleavage

Muscovite

non-ferromagnesian

Mica Group and Clay Minerals

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 26/33

Structure of Phyllosilicates

Octahedral layer 

 ± Layer of octahedral

coordinated

magnesium (brucitelayer) or 

Aluminum (gibbsite

layer)

 ± Makes up the other basic structural unit

Kaolinite: Al2Si2O5(OH)41:1 tetrahedral ² octahedralsheets

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 27/33

The Major Clay Mineral Groups

Kaolinite group:

 ± 1:1 TO clay minerals

Mica (illite) group:

 ± 2:1 TOT clay minerals ± Expandible clays:

Smectite- montmorillonite

complex 2:1 clay minerals

Chlorite ± Fe- and Mg-rich TOT clays

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 28/33

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 29/33

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 30/33

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 31/33

All the corners of a SiO4 tetrahedron are linked with the corners of the

neighboring tetrahedron resulting in a Si : O = 1:2

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 32/33

 Name Crystal System Density (g/cm 3)Refractive Index

(mean)

Stishovite (Si in 6-fold

coordination)Tetragonal 4.35 1.81

Coesite Monoclinic 3.01 1.59

Low (E) Quartz Hexagonal 2.65 1.55

High ( F) Quartz Hexagonal 2.53 1.54

Kaetite (synthetic) Tetragonal 2.50 1.52

Low (E) Tridymite Monoclinic or Orthorhombic 2.26 1.47

High ( F) Tridymite Hexagonal 2.22 1.47

Low (E) Cristobalite Tetragonal 2.32 1.48

High ( F) Cristobalite Isometric 2.20 1.48

E Ftransformation involves small

change in structural and physical

properties and hence is ³displacive´

transformation

 All other transformations involve large

change in structural and physical

properties and hence are

³reconstructive´ transformation.

8/3/2019 Mineralogy 23.10.08(Class1)

http://slidepdf.com/reader/full/mineralogy-231008class1 33/33

IMMISCIBLE

Movement

direction of the

boundar y at high

temperature

Feldspar Group (Si+4 replaced by Al+3 and the charge is balanced by

Ca+2, K+1 or Na+1)

 Alkali feldspar : Solid solution between K AlSi3O8 (Sanidine, orthoclase,

microcline) and Albite (Na AlSi3O8)Plagioclase : Solid solution between Albite (Na AlSi3O8) and Anorthite

(Ca Al2Si2O8)