Mission Analysis and Tools - Summer School Alpbach · Mission Analysis and Tools Alpbach...

Post on 09-Nov-2018

225 views 0 download

transcript

Mission Analysis and Tools

Alpbach Summerschool 2014

Marcus Hallmann (DLR)

Marcus.Hallmann@dlr.de

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

Quelle: TSTI

Marcus.Hallmann@dlr.de

The Orbit Design Process

Establish orbit types

Determine orbit related requirements

Assess launch options

Create ΔV budget

Perform orbit design trades

Marcus.Hallmann@dlr.de

Determine orbit related requirements

Temperature gradient

Absolute temperature

Straylight reduction

Max eclipse time

Communication requirements ( volume, timeliness )

Sun-Spacecraft-Earth angle ( >5deg for communication )

Scan strategy

Attitude disturbance reduction

Radiation (total dose over mission time)

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

Equation of motion:

Energy:

Orbit angular momentum:

Two-Body System

3· 0r r

r

m- =

2

2

v

r

mx = -

h r v= ´

Marcus.Hallmann@dlr.de

Conic Sections

Equation of a conic section (trajectory equation):

Slicing the cone with a plane:e>1 Hyperbola0<e<1 Ellipsee=0 Circlee=1 Parabola

1 cos( )

pr

e n=

+

Marcus.Hallmann@dlr.de

Ellipse

Focus F and F‘

Semimajor axis a

Semiminor axis b

Semiparameter p

Eccentricity e

True anomaly n

Apoapsis rmax = ra

Earth = Apogee; Sun = Aphelion; Moon = Aposelen

Periapsis rmin = rp

Earth = Perigee; Sun = Perihelion; Moon = Periselen

Marcus.Hallmann@dlr.de

Ellipse

2PF PF a¢ + =

2 2 2 2( ) 1b ae a b a e+ = = -

(1 )1 cos(0) 1

(1 )1 cos( ) 1

p

a

p pr a e

e ep p

r a ee ep

= - = =+ ⋅ +

+ = ==+ ⋅ -

2 2(1 ) /p a e b a= - =

2a pr r a+ =

a p

a p

r re

r r

-=

+

Marcus.Hallmann@dlr.de

Hyperbola

2PF PF a¢- = -

1b a e= -

(1 )pr a e= -

2 2(1 ) /p a e b a= - = -

Marcus.Hallmann@dlr.de

Hyperbola

1 cos( )

1cos( ) lim

10

1

r

pe

rp

er e

e

e

n

n¥ ¥

+ =

æ ö÷ç= - ÷ç ÷ç ÷è ø

= -

= -

1arccos( )

en¥ = -

Marcus.Hallmann@dlr.de

Two-Body Motion

Orbital period:

Orbital energy:

Vis-Viva equation:

Eccentric anomaly E:

Mean anomaly M:

3

·2·a

P pm

=

2 2 1v

r amæ ö÷ç= - ÷ç ÷ç ÷è ø

2

2 2

v

a r

m mx = - = -

3sin( ) ( )pM E e E t t

a

m= - = -

cos( )cos( )

1 cos( )

eE

e

nn

+=

+

Marcus.Hallmann@dlr.de

Orbital Elements

a semimajor axis

e eccentricity

I inclination

Ω ascending node

ω argument of periapsis

ν true anomaly

0 0

0 0 0 0

0 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

x x

y y

z z

r t v t

r t r t v t v t

r t v t

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç÷ ÷ç çè ø è ø

Marcus.Hallmann@dlr.de

Ecsape Velocity from a Circular Orbit

Circlevr

m=

2Parabolav

r

m⋅=

2CiParabol ca r lev v v

r r

m m⋅D = = --

( )2 1D = ⋅ -vr

m

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

Hohmann Transfer

1D = -p p Kv v v

2D = -a K av v v

D = D + DHohmann p av v v

1 2

2 2

+ += =p ar r r r

a

( )1 1

2

1

21 1

1 1

2Hohmann

kv

r k r

k

k

r

r

k

m mæ ö æ öæ ö⋅ ÷ ÷ç ç ÷ç÷ ÷ç çD = - + - ÷ç÷ ÷ç ÷ç ç÷ ÷÷÷÷ çç è ø+ +è øè

=

ø

:

Marcus.Hallmann@dlr.de

Solar System Parameters

Planet e i[°] r[AU] vF[km/s] v[km/s] Period[yr]

Mercury 0.205 7.0 0.39 4.3 47.9 0.241

Venus 0.007 3.4 0.72 10.4 35.0 0.615

Earth 0.017 0.0 1.00 11.2 29.8 1.000

Mars 0.094 1.9 1.52 5.0 24.1 1.88

Jupiter 0.049 1.3 5.20 59.5 13.1 11.9

Saturn 0.057 2.5 9.58 35.5 9.7 29.4

Uranus 0.046 0.8 19.20 21.3 6.8 83.7

Neptune 0.011 1.8 30.05 23.5 5.4 163.7

Pluto 0.244 17.2 39.24 1.1 4.7 248.0

Marcus.Hallmann@dlr.de

Hohmann Transfer, Δv Magnitude in the Solar System

0 5 10 15 20 25 30 35 400

2

4

6

8

10

12

14

16

Zielorbit [AU]

delta

V [k

m/s

]

Hohmann Transfer von der Erde

Mars

dvdvp

dva

Marcus.Hallmann@dlr.de

Hohmann Transfer

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

5

10

15

20

25

Zielorbit [AU]

delta

V [k

m/s

]

Hohmann Transfer von der Erde

Mars

Venus

Merkur dvdvp

dva

Marcus.Hallmann@dlr.de

Hohmann Transfer, Time-of-Flight

3

2

P at p

mD = =

Time-of-Flight:

( )1 23

1.52 1 1

2 2

+

Å

æ ö+ ÷ç= = ⋅ ÷ç ÷ç ÷è ø

r r

kPp

m

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Zielorbit [AU]

Tran

sfer

zeit

[yr]

Hohmann Transfer von der Erde

Mars

VenusMerkur

0 5 10 15 20 25 30 35 400

5

10

15

20

25

30

35

40

45

50

Zielorbit [AU]

Tran

sfer

zeit

[yr]

Hohmann Transfer von der Erde

Marcus.Hallmann@dlr.de

Phase Angle γ

( )1 23

2( )

+

D = D =

r r

Mars Mars Marsn t nn pm

( )1 23

2

+

D =

r r

Mars Marsnn pm

( )1 23

2

32

+

D =

r r

Marsr

mn p

m

1.51 1

2

æ ö+ ÷ç ÷çD = ⋅ ÷ç ÷ç ÷÷çè ø

kMarsn p

1.51 11

2

æ öæ ö ÷ç + ÷÷çç ÷÷çç= - D = ⋅ - ÷÷çç ÷÷çç ÷÷÷çç ÷è ø ÷çè ø

kMarsg p n p

1 0

1 0

k

k

gg

> >< <

outbound, target planet must be in front of Earthinbound, target planet must be behind Earth

Marcus.Hallmann@dlr.de

0 5 10 15 20 25 30 35 40-300

-250

-200

-150

-100

-50

0

50

100

150

Zielorbit [AU]

Pha

senw

inke

l [d

eg]

Hohmann Transfer von der Erde

Phase Angle γ

1.51 11

2

æ öæ ö ÷ç + ÷÷çç ÷÷çç= - D = ⋅ - ÷÷çç ÷÷çç ÷÷÷çç ÷è ø ÷çè ø

kMarsg p n p

Marcus.Hallmann@dlr.de

Synodic Period

2n

P

p=

Mean angular velocity:

( )1 1.51

2 1

1Syn

k

Pn

pt = = ⋅

D -

2 1n n nD = -Relative angular velocity between two planets:

( )1.51

1

1Syn

k

Pt Å= ⋅-

Synodic period:

Marcus.Hallmann@dlr.de

Synodic Period

0 5 10 15 20 25 30 35 400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Zielorbit [AU]

Syn

odis

che

Per

iode

[J

ahre

]

Hohmann Transfer von der Erde

( )1.51

1

1Å= ⋅

-Syn

k

Pt

Marcus.Hallmann@dlr.de

Δv for a change in Inclination of an Elliptical Orbit

1 2 cos= = ⋅ v v v f

cos sin2 2

æ öD D ÷ç= ⋅ ⋅ ÷ç ÷ç ÷è øv i

v f

2 cos sin2

æ öD ÷çD = ⋅ ⋅ ⋅ ÷ç ÷ç ÷è øi

v v f

Marcus.Hallmann@dlr.de

Inklination [deg]

[deg

]

dv

[km/s] für r=7000 km

0 20 40 60 80 100 120 140 160 180

5

10

15

20

25

30

35

40

45

0

1

2

3

4

5

Node Change

( )2 212

2 1 cos ( ) sin ( ) cos( )D = ⋅ ⋅ - - ⋅ DWv v i i sin( )

sin hd

r adt h i

w n+W= ⋅

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

Lambert Problem

1 2 2 1, , ,r r t t We know :

1 2r r

We are looking for the ellipse or hyperbola which connects und

In the real world the orbits of the planets are neither coplanar nor circular.

2 1t t t- = DIf we specify the time-of-flight( ), only one soultion exists.

Marcus.Hallmann@dlr.de

Earth-Mars Transfer Lambert

Launch Date: 61344 ModJDate 31 Oct 2026Transfer Time: 309 daysArrival Date: 61654 ModJDate 6 Sep 2027

Marcus.Hallmann@dlr.de

Earth-Venus Transfer Lambert

Launch Date: 60676 ModJDate 1 Jan 2025Transfer Time: 127 daysArrival Date: 60803 ModJDate 8 May 2025

Marcus.Hallmann@dlr.de

Earth-Mercury Transfer Lambert

Launch Date: 60806 ModJDate 11 May 2025Transfer Time: 100 daysArrival Date: 60907 ModJDate 20 Aug 2025

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

„Hyperbola Elements“

Hyperbola elements are useful for describing an orbit when leaving or approaching a planet.

6 elements are needed:

rp

C3 energy = (v∞)2

Right ascension α and declination δ of theoutgoing asymptote

Velocity azimuth at periapsis

True anomaly

Marcus.Hallmann@dlr.de

Marcus.Hallmann@dlr.de

Example Mars-Transfer in 2003

Solve Lambert problem:

Launch Epoch [ModJDate]

Tran

sfer

Tim

e [D

ays]

Cost Function = dv1 + dv2 [km/s]

5.6675 5.6675 5.6675 5.6675 5.6675 5.6675 5.6675 5.6675 5.6675 5.6675

5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

x 104

100

150

200

250

300

350

400

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

2

2

1

2

2.90

0.55

0.28

10.73

5.46

2.97

3 8.786

kms

kms

kms

dv v

Mag

C v

ad

¥

¥

¥

¥

æ ö÷ç ÷ç ÷ç ÷ç= = - ÷ç ÷ç ÷÷ç- ÷çè ø

= - = -

=

= =

In spherical coordinates:

Marcus.Hallmann@dlr.de

Example Mars-Transfer in 2003

Credits: OFOISR, Proton Users Manual

Marcus.Hallmann@dlr.de

Example Mars-Transfer in 2003

2

1 1.1452pr ve

Å

⋅= + =

1acos 150.83

en¥

æ ö÷ç= - ÷ = ç ÷ç ÷è ø

1 2

sin sin sin( )

sin sinasin 180 asin

sin sin

i

i i

d w nd d

w n w n

¥

¥ ¥

= +æ ö æ ö÷ ÷ç ç= ÷ - = - ÷ -ç ç÷ ÷ç ç÷ ÷è ø è ø

64.8

200ParkingOrbit

ParkingOrbit

i

h km

= =

Start from Baikanour:

1

2

203

35

ww

= =

2 solutions:

0 50 100 150 200 250 300 350-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1sin(i)*sin( + ) ; i=64.8

[deg]

sin()

0 50 100 150 200 250 300 350-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1sin(i)*sin( + ) ; i=3

[deg]

sin()

Marcus.Hallmann@dlr.de

Example Mars-Transfer in 2003

( ) ( )tan cos( )sin ; cos

tan cosi

d w na a

d¥ ¥

¥ ¥¥

+-W = -W =

For the ascending node we can derive:

tan cos( )atan ,

tan cosi

d w na

d¥ ¥

¥¥

Wæ ö+ ÷ç ÷W = - ç ÷ç ÷çè ø

goes from 0..360°, quadrant check must be performed:

1

2

351.84

346.66

W = W =

· W

·

is controlled via the time spent in the parking orbit

is controlled via the daily launch time

the launch date comes out of the solution to the Lambert problem

Marcus.Hallmann@dlr.de

Example Mars-Transfer in 2003

Marcus.Hallmann@dlr.de

Approaching the Target Planet, B-Plane

vS

¥

=

Definition B-Plane:

zT S e= ´

ze can be the North Pole or e.g. the ecliptic

R

R S T= ´

forms a right-handed orthogonal system:

Marcus.Hallmann@dlr.de

Approaching the Target Planet, B-Plane

Marcus.Hallmann@dlr.de

Approaching the Target Planet, B-Plane

Marcus.Hallmann@dlr.de

Approaching the Target Planet, B-Plane

cos cos cos i

qq d¥ =

We can derive a relation for the B-Plane angle :

.i d¥³Out of this we can see that the inclination is constrained:

0 50 100 150 200 250 300 3500

20

40

60

80

100

120

140

160

180

[deg]

i [de

g]

=0°

=30°

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

Launcher Performance

VEGA: S-ClassSSO@800 ~= 1300 kg

Soyuz: M-ClassSSO@800 ~= 4400 kg

Ariane 5: L-ClassSSO@800 ~= 10000 kg

Ariane 5ME: XL-ClassSSO@800 ~= 30000 kg

Marcus.Hallmann@dlr.de

Launcher Performance, VEGA

Marcus.Hallmann@dlr.de

Launcher Performance, Soyuz

Marcus.Hallmann@dlr.de

Launcher Performance, Ariane

Credits: ESOC

Marcus.Hallmann@dlr.de

Launchers

Marcus.Hallmann@dlr.de

Launchers

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

Gravity Assist 2D Case

2

1cos

1

)(

peri

Planet

er v

e

n

m

¥

¥

= -

⋅= +

12 arcsin

ea

æ ö÷ç= ⋅ ÷ç ÷ç ÷è ø

Deflection angle:

( )v va¥- ¥+= ⋅Rot

12 ¥D = ⋅Satv v

e

Marcus.Hallmann@dlr.de

Gravity Assist 2D Case

In front of the planet => Heliocentric velocity decrease

Behind the planet => Heliocentric velocity increase

Marcus.Hallmann@dlr.de

Marcus.Hallmann@dlr.de

Gravity Assist, 3D Case

Marcus.Hallmann@dlr.de

Gravity Assist 3D Case

( ) ( ( ))pv r vq a¥- ¥+= ⋅ ⋅Rot Rot

Sat Planetv v v¥- -= -

Sat Planetv v v+ ¥+= +

You can choose θ and rp for free(without spending any deltaV), because the asymptote can bemoved around the B-plane.

Marcus.Hallmann@dlr.de

Gravity Assist, Tisserand‘s Graph

( )22 1 cos( )SatSat Sat

Sat

v

r aT e i

a rÅ

Å

¥

= + ⋅ - =

=

constant for sequential fly-by's at a planet

constant (it's just a rotation of the velocity vector relative to the planet )

Can be used to find possible GA sequences

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

rp [AU]

r a [AU

]

E 3E 4E 5E 6V 3V 4V 5V 6

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.780.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

rp [AU]

r a [AU

]

E 3E 4E 5E 6V 3V 4V 5V 6

Marcus.Hallmann@dlr.de

Gravity Assist e.g. Rosetta

Marcus.Hallmann@dlr.de

Gravity Assist e.g. Cassini

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

Low thrustEngine performance Fregat Upper stage

0 50 100 150 200 2501000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Time [s]

mt [k

g]

Isp = 320s m1 = 2000kg Thrust = 14000 N

0 50 100 150 200 2500

0.5

1

1.5

2

2.5

Time [s]

dv [k

m/s

]

Isp = 320s m1 = 2000kg Thrust = 14000 N

Marcus.Hallmann@dlr.de

Low thrustEngine performance ion engine

0 1 2 3 4 5 6 71000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Time [year]

mt [k

g]

Isp = 2000s m1 = 2000kg Thrust = 0.1 N

0 1 2 3 4 5 6 70

2

4

6

8

10

12

14

Time [year]

dv [k

m/s

]

Isp = 2000s m1 = 2000kg Thrust = 0.1 N

Marcus.Hallmann@dlr.de

Ion thrusters survey

ESA (Qinetiq T6):ISP 4200 sFmax 0.2 NP 5-6 kWMissions:

• Bepi Colombo

ESA (PPS 1350 SNECMA):ISP 1660 sFmax 0.09 NP 1.5 kWMissions:

• SMART

Credit: ESA

Credit: ESA

Marcus.Hallmann@dlr.de

Ion thrusters survey

NASA(NSTAR):ISP 3100 sFmax 0.09 NP 2.6 kWMissions:

• Deep Space 1• Dawn

Credit: NASA/JPL

Credit: NASA/JPL-Caltech

Credit: NASA/JPL

Marcus.Hallmann@dlr.de

Ion thrusters survey

JAXA(NEC):ISP 3200 sFmax 0.008 NP 0.35 kWMissions:

• Hayabusa

Marcus.Hallmann@dlr.de

Lambert Solver for Low ThrustShape-Based Approach

Exponential sinuoid used by Petropoulos:

Inverse polynominal used by Wall and Conway:

Marcus.Hallmann@dlr.de

Example Mars Transfer

tof = 700 days

m0 = 2100 kg (Soyus)

v_inf = 1.0 km/s

m_final = 1765kg

Isp = 4000 s

F_max = 0.2 N

Marcus.Hallmann@dlr.de

Example Mars Transfer

Marcus.Hallmann@dlr.de

ESA cornerstone mission to MercuryLaunch: 9 July 2016

MPO: Mercury Planetary Orbiter (480 x 1500 km)

MMO: Mercury Magnetospheric Orbiter (JAXA)(600 x 11800 km)

Bepi Colombo (Credits: Rüdiger Jehn, ESOC)

Marcus.Hallmann@dlr.de

Low thrust trajectory optimization

Specific impulse 4022 sMaximum thrust 0.290 NSEP availability 90%Fuel consumption for navigation 5%

4.1 tons

pull

Bepi Colombo

Marcus.Hallmann@dlr.de

Optimization ConstraintsConstraint ValueEarth flyby altitude > 300 kmVenus 1 flyby altitude < 1500 kmVenus 2 flyby altitude > 300 kmMercury flyby altitudes > 200 kmLast Mercury flyby altitude > 300 kmDuration of coast arc before flybys > 30 days

Duration of coast arc after flybys > 7 days

Duration of coast arc after launch > 90 days

Duration of coast arc before MOI > 60 days

Solar aspect angle (outside 0.8 AU) 77° < SAA < 112.5°

Solar aspect angle (inside 0.8 AU) 77° < SAA < 94.5°

Bepi Colombo

Marcus.Hallmann@dlr.de

Bepi Colombo

Marcus.Hallmann@dlr.de

Bepi Colombo

Departure Launch Date 9 July 2016Escape velocity 3.475 km/sEscape declination -3.8°Initial mass 4100 kg

Cruise ∆V SEP 4.254 km/sTotal impulse 16.6 MNsCruise time 7.5 years

Arrival Date 1 Jan 2024Mercury true anomaly

67.8°

Velocity at periherm

3.793 km/s

Ωarr 67.7°ωarr (South pole) -2°

Marcus.Hallmann@dlr.de

Content

Mission Analysis in the Context of System Engineering

Keplerian Elements

Hohmann Transfer / Inclination Change

Lambert Problem

Arriving and Leaving a planet

Launcher Performance

Gravity Assist

Low Thrust

Special Orbit Types

Marcus.Hallmann@dlr.de

Sun Synchronous Orbit (SSO)

A SSO maintains the same orientation with respect to the sun all year round. This natural phenomen is due to the irregular shape of the earth.

Imagined by Jean-Pierre Penot (CNES) and Bernard Nicolas, illustrated by Bernard Nicolas

Marcus.Hallmann@dlr.de

Sun Synchronous Orbit (SSO)

22

23( ) sin

2(3 1)Å Å- ⋅

⋅= -

Potential:R

U r Jr

mj

2

24(sin2 sin( ))

3

2h ia u

RJ

r

mÅ Å= -⋅

⋅⋅

32

sin( )

sin

W» ⋅ h

udr a

du h i

72

9.96 cosÅ

Å

æ ö÷ç ÷çDW = - ⋅÷ç ÷÷ç +è øday

Ri

h R

72

0.9856 9.96 cosÅ

Å

æ ö÷ç ÷ç = - ⋅÷ç ÷÷ç +è ø

Ri

h R

72

acos 0.0989 Å

Å

æ ö÷ç æ ö ÷ç + ÷÷çç ÷÷çç= - ÷÷çç ÷÷÷çç ÷è ø ÷ç ÷çè ø

SSOSSO

R hi

R

0 1000 2000 3000 4000 5000 600090

100

110

120

130

140

150

160

170

180

Height (km)

SS

O In

clin

atio

n (d

eg)

Marcus.Hallmann@dlr.de

Geostationary Orbit

3

2 23h56min

42162km

= =

=

Orbital Period:

rP

r

pm

1 Jan 26 Feb 12 Apr 29 Aug 14 Oct 31 Dec22

22.5

23

23.5

24

Time

Sun

light

[hr]

Sunlight GEO

Marcus.Hallmann@dlr.de

Highly elliptical orbit

Elliptical orbit:Different regions can be studied

Two satellites:Time derivations can be determined

Marcus.Hallmann@dlr.de

Literatur

Interplanetary Mission Analysis and Design, Stephen KembleISBN 3-540-29913-0

Fundamentals of Astrodynamics and Applications, David ValladoISBN 978-1881883142

Space Mission Engineering: The new SMAD, James R. WertzISBN 978-1-881-883-15-9

Marcus.Hallmann@dlr.de

Web

http://nssdc.gsfc.nasa.gov/planetary/planetfact.html

http://naif.jpl.nasa.gov/naif/spiceconcept.html

http://gmat.gsfc.nasa.gov/

Marcus.Hallmann@dlr.de

Thanks for your attention

Time for questions