monitoreo basico capnografia pam oximetria

Post on 02-Jul-2015

7,105 views 0 download

transcript

MONITOREO BASICO

INTERPRETACION NORMAL Y PATOLOGICA

-CAPNOGRAFIA

-PRESION ARTERIAL MEDIA

-OXIMETRIA DE PULSO

RESIDENCIA ANESTESIOLOGIAHOSPITAL SAN MARTIN

AMPARO RANEA

CAPNOGRAFIAMonitoreo intercambio gaseoso

Capnografia

• “monitorización continua no invasiva de la presión parcial de CO2 exhalado por el paciente a lo largo del tiempo”

• Capnometria: capnometro. nivel de CO2 exhalado. Representa un valor numérico

• Capnografia: capnografo. Ofrece valor numérico del CO2 exhalado (capnometria), registro grafico en tiempo real de la eliminación de CO2 (capnografia), y la frecuencia respiratoria del paciente

Fisiología

• CO2 producto final del metabolismo aeróbico del organismo (mitocondria)

• Cantidad de CO2 y bicarbonato producida muy elevada (120 lts). Se acumula en hueso, tej adiposo, líquidos corporales

• Nivel CO2 en líquidos corporales según equilibrio entre producción y eliminación

• A partir de su origen: gradiente de presiones hasta eliminarse por pulmón

• Final ESP: vías aéreas contienen aire alveolar de la respiración previa

• Inicia inspiración: este aire es el que primero llega a los alvéolos

• Sigue inspiración: aire atmosf entra en alv. PO2 >PAO2, PCO2 < PACO2

• Espiración: se elimina primero el aire sin cambio de composición en el ciclo respiratorio, luego mezcla con el aire alveolar

PACO2 y PaCO2

• Cantidad de CO2 en alvéolos es igual a la proporción entre lo que pasa a sangre y lo que se elimina por ventilación

• Influyen en PACO2 – Volumen corriente– Frecuencia respiratoria– Eliminación de CO2– Concentración inspirada de CO2

• Influyen PaCO2– Ídem– Shunts– Relación V/Q (cantidad de alvéolos perfundidos pero no ventilados)

Relación V/Q

• Posición vertical: 10% de sangre venosa por alvéolos no ventilados

• Modifican el V/Q– Gasto cardiaco– Producción CO2– Resistencia vía aérea– Capacidad residual funcional

↓Producción y liberación de CO2

– Hipotermia– Hipoperfusion pulmonar– Detencion circulatoria– Embolismo pulmonar– Hemorragia– Hipotensión– Hiperventilación

– Desconexión ventilador– Obstrucción vía aerea– Intubación esofágica– Perdida alrededor

manguito del tubo

Gradiente entre PACO2 y PaCO2• Normal: < 5mmHg (corresponde al espacio

muerto)• Gradiente PaCO-EtCO2 directamente

proporcional al espacio muerto (diluye CO2 que viene del intercambio gaseoso, PACO2)

• Aumento espacio muerto produce – aumento del gradiente– Aumento pendiente meseta fase 3– Anestesia 5-10mmHg

• Causas– Hipoperfusion pulmonar– Embolismo pulmonar (aumento agudo)– Paro circulatorio– Ventilacion con P+, PEEP– Frecuencia respiratoria alta– Patología obstructiva vía respiratoria– tabaquismo

Tipo capnografo:de aspiración, lateral

– Absorben continuamente gas del circuito respiratorio

– lo proporcionan a células de muestra dentro del dispositivo

– Compara absorción de luz infrarroja dentro de la celular de muestra con una cámara libre de CO2

– precipitación de agua en el tubo de aspiración y en el toma de muestra. obstrucción y tomas de muestra erróneas

– Si volúmenes finales son bajos pueden retardar la medición del ETCO2 y subestimarlo durante una ventilación rápida

capnograma

• Fase 1: línea de base• Fase 2: ascenso rápido• Fase 3: meseta• Fase 4: inspiración

Fase 1: línea de base

– Periodo entre el final de la inspiración y el comienzo de la espiración

– ventila el espacio muerto– Debe coincidir con el 0. – Significa que no hay eliminación de CO2

Fase 2: ascenso rápido

– inicio de la espiración– Mezcla gas del espacio muerto y gas alveolar– Ascenso agudo de la curva– Primera porción: CO2 remanente del ciclo respiratorio

anterior contenido en las grandes vías aéreas– Segunda porción: eliminación del CO2 contenido en la

primera generación de alvéolos de las vías aéreas cortas

Fase 3: meseta

– al final de la espiración– Concentración CO2 valor promedio de todas las unidades

ventiladas– Exhalación del CO2 de aire procedente de los alvéolos– Ascenso lento, hasta alcanzar un valor donde la PpCO2 es

máxima – Este valor de PpCO2 al final de la espiración es la EtCO2

Fase 4: inspiración• Inhalación aire libre de CO2• No eliminación de CO2• Cae la curva

Ángulos

• Alfa: – unión entre fase 2 y 3– Aumenta con pendiente de fase 3 (patología

obstructiva)

Espacio muerto fisiológico• Línea horizontal que pase por

valor CO2 arterial (extracción teniendo en cuenta el EtCO2)

1. Área X: volumen alveolar espirado. Ventilacion alveolar efectiva

2. Área Z: línea vertical que corta a la fase 2 en dos partes iguales. Representa espacio muerto anatómico

3. Área Y: representa espacio muerto alveolar

4. Y+ Z= espacio muerto fisiológico

• Gradiente entre el ETCO2 y la PaCO2 (2 a 5mmHg) refleja el espacio muerto alveolar (ventilados pero no perfundidos)

• Gradiente puede aumentar:1. Alteración en el muestro (fuga alrededor tubo ET, adaptador vía

aérea cerca del FGF, etc.)

2. Alteración relación V/Q: ventilación espacio muerto (pulmón ventilado, no perfundido), shunt (no ventilación, flujo sangre normal)

3. Vaciado alveolar incompleto (EPOC, ASMA)

Alteraciones capnografia

• Causas• Fisiológicas• Alt vía aéreas• Alt equipo

• Patrones:• Caída de la curva• EtCO2 sostenidamente bajo• Aumento del EtCO2• Elevación línea de base• otros

Caída curva

• Caída brusca de la curva a 0• Caída brusca que no llega a 0• Caída gradual EtCO2

Caída brusca a 0 antes de finalizar espiración

• Desconexión sistema• Intubación esofágica• Obstrucción tubo endotraqueal• Tubo endotraqueal desplazado• Mal funcionamiento del ventilador

Caída brusca sin llegar a cero

• Perdida por tubo endotraqueal• Mascara mal coaptada• Fuga por insuflación insuficiente manguito• Obstrucción parcial tubo endotraqueal• Obstrucción parcial vía aérea• Fuga en la maquina o en el circuito

Caída exponencial EtCO2

• Deterioro catastrófico de la función cardiopulmonar. Aumento del espacio muerto fisiológico, aumento de la diferencia PACO2-PaCO2

• Hipotensión• Paro circulatorio• Perdida de sangre masiva • TEP• Compresión vena cava• Hiperventilación inadvertida

EtCO2 sostenidamente bajo, sin buena meseta

• Mala meseta: indica vaciamiento incompleto de pulmones.

• Broncoespasmo• Colapso parcial del manguito del tubo• No se pueden tomar valores como fidedignos

EtCO2 sostenidamente bajo, con buena meseta

• Mala calibración aparato• Aumento del espacio muerto fisiológico (EPOC)• Aumento presión en vía aérea• Deshidratación• Hiperventilación

Disminución gradual ETCO2

• Morfología normal• Progresiva y lenta caída del etCO2• Descenso temperatura corporal (<producción)• Disminución circulación pulmonar• Depresión cardiovascular• Hiperventilación

Ascensos curva

• Aumento gradual CO2• Aumento súbito CO2• Elevación de la línea de base• Elevación línea de base y del etCO2

Aumento gradual del etCO2

• Fuga ventilador o del sistema• Obstrucción parcial vía aérea• Hipertermia• Cirugía laparoscopia

Aumento súbito etCO2

• Liberación torniquete en una extremidad• Absorción CO2 en laparoscopia

Aumento gradual línea de base

• Contaminación muestra con agua o secreciones

• limpieza

Elevación brusca línea de base y etCO2

• Reinhalacion del CO2 espirado• Conducta– Aumento volumen corriente y FGF– Aumento tiempo espiratorio

Otras alteraciones

• Bloqueo neuromuscular parcial– Hendidura en el plateau alveolar al final de la

espiracon– Contracción anticipada del diafragma

Otras alteraciones

• Oscilaciones cardiogenicas

PRESIÓN ARTERIAL MEDIAmonitoreo

Monitoreo PAM

• Medición directa de la presión arterial

• Onda de presión de la arteria canalizada es reproducida en el monitor

• Artefactos (catéter arterial, guía, lavado, transductor, amplificador, etc.)

Onda presión arterial mediaResultado de la suma de ondas mas simples de diferentes frecuencias y amplitudes: frecuencia fundamental y la “segunda armónica”

•Frecuencia fundamental: igual a la frecuencia del pulso•Onda armónica secundaria

•Onda de pulso arterial.•Ascenso sistólico•Pico sistólico•Muesca dicrotica

1. Ascenso presión durante sistole

1. Pico presión sistólica

1. Descenso sistólico

1. Muesca dicrotica (cierre válvula aortica)

1. Descenso diastólico (luego de la onda T)

1. Presión al final de la diástole

• Origen: eyección de sangre desde el ventrículo izquierdo hacia aorta durante la sistole, seguido de la disminución de este volumen durante diástole (distribución periférica)

• Componente sistólico sigue a la onda R en el ECG ( art radia 120 a 180msg después)

Medición central vs periférica

• PAS: pico presión sistólica• PAD: presión fin diástole• PAM: PAD + ⅓ presión pulso (sis-diast)

• a medida que la onda viaja hacia la periférica:– Aumento sistólico mas prominente– Pico sistólico mas elevado–Muesca mas tarde– Presión fin diástole mas baja

Medición central vs periférica

• Ondas periféricas: PAS mas elevada, PAD mas baja, retraso temporal, muesca menos prominente.

• PAM en aorta levemente mas elevada que en la radial

• Variaciones en diferentes zonas del cuerpo en pacientes sanos

Ondas Anormales

Pulso Patología

Tardus (atrasado), parvus (baja amplitud) Estenosis aortica

Doble pico (bisferiens) Insuficiencia aortica

Alternancia en la amplitud (pulsus alternans)

Falla sistólica del VI

Pulso paradojico: descenso exagerado de la presión sistólica durante inspiración

Taponamiento cardiaco

• Estenosis aortica: alt morfología, menor amplitud, ascenso mas lento, pico sistólico retrasado

• Insuficiencia aortica: pulso bisferiens, ascenso rápido, presión diastólica mas baja, curva mas ancha

• pulso alternante: ondas de presiones diferentes. Indica falla severa VI

• pulso paradojico: caída inspiratoria de la presión sistólica exagerada, mayor a 10 mmHg. Taponamiento cardiaco. •También en: obstrucción vía aérea, broncoespasmo, cambios en la P intratx

OXIMETRÍA DE PULSO

Oximetría de pulso

• Un sensor emite luz (2 a 3 diodos emisión de luz), otro detecta la luz (fotodiodo)

• Se basa en dos principios

– La absorción de la luz para dos longitudes de onda . HbO2 absorbe mas luz infrarroja, la Hb absorbe mas luz roja

– La absorción de las longitudes de onda tiene un componente pulsátil. Miden amplitud del pulso y FC

• UTILIDAD– Detección hipoxemia– Curva pletismografica

• Hipovolemia• Modificaciones curva presión sistólica en asistencia

respiratoria mecánica

• LIMITACIONES. Artefactos– HbCO: ídem absorción que HbO2. Lectura valor > al

real (falsamente elevada en intox)– metaHB. Lectura erroneamente baja cuando SaO2

>85%, y erroneamente alta cuando SaO2 <85%– Luz ambiente, baja perfusión, hipotermia, aumento

resistencia vascular, movimientos, etc.

• Inicio fase inspiratoria: volumen sangre pasa a la aurícula izquierda aumento precarga aumenta VS en 2 a 3 latidos siguientes ONDA ASCENDENTE

• Continua inspiración, aumenta presión intratx, disminuye retorno venoso, menor precarga, menos volumen sistólico ventrículo izquierdo caída de la onda del pulso ONDA DESCENDENTE

• Hipovolemia: aumenta la onda descendente