MoProSuite Crystallographic software charge density refinement · Step 12 Refinement of charge...

Post on 22-Aug-2020

1 views 0 download

transcript

MoProSuite :  Crystallographic  software

for charge density refinement

http://crm2.univ‐lorraine.fr/lab/software/mopro/download‐mopro/

Christian Jelsch.    CNRS.  Université de Lorraine.  France; 

1

MoProSuite   working  under  Windows, linux & mac.

29th ECM   Crystallographic  Computing  School 

Croatia,  Rovinj   20th‐21st August  2015

T u t o r i a l    T u t o r i a l    

Step 1      Lauch  MoProGUI 

Requires JAVA,  which can be downloaded at: https://www.java.com/fr/download/

MoPro Graphical User  Interface 

2

Step 2      initial steps  :  follow  the GUIDE

3

Step 3      Display  molecule  with  MoProViewer 

4

Step 4      Select  reflections  file 

h k l  Iobs  sigma(Iobs)

5

Step 5    Refine  SCAle factor 

Evolution of R‐factors Evolution of R‐factors

Click  on ’’mopro Input file’’& 

’’mopro Output file’’

6

Step 6    Preparation of constraints & restraints

e.g.  H‐X distances for Hydrogen atoms

Edit  and  have a  look  at the  generated CONSTRAIN.txt  &  RESTRAIN.txt files 7

Step 7   Refine structure    

SCA   XYZ  UIJ    are selected SCAle factor, Positions  &  Thermal motion parameters

8

Step 8    Compute a Fourier Residual  Electron Density   2D map

2D map:Select Map Property : Fourier SynthesisSelect Fourier file :  alamet_02.FOUR   Data are Merged  Click on ’’Run VMoPro’’ to start calculation

Click on  3 atoms

to define a plane

9

Step  9    Compute a Fourier Residual  ElectroStep 9    HIGH ORDER refinement  of  structure 

! <refinement> structural RESO   0.25   0.7SELE  XYZ UIJ  NOHREFI   CG 10  DAMP 0.7WRIT RFAC

High resolution data  d < 0.7 Å ,  Hydrogen not refined

Write a Fourier reflections filefor all resolution 

The MoPro commands

10

Step  10      Compute  a  Fourier Residual  Electron Density 

after High‐Order refinement

Slightly Stronger  residual electron densityvisible on covalent bonds

11

RESO   0.25   900.WRIT  FOUR

Step  11    Compute  a  Fourier Residual  map   at LOW resolution

after High‐Order refinement

Bonding

Electron

Density

is clearly 

visible

sin/ < 0.8 Å‐1

resolutiond > 0.6 Å

12

Step  12    Refinement  of  charge  density

* Block diagonal:   variables are decorrelatedand can be refined together*  Damping to avoid divergence

Have a look at resulting molecular .par file

ATOMS     31

ATOM     1  O1    thy    1  ‐0.274124   0.489775   0.825512  1.0000   1 O   XY  C1        N1           OCT  K1      V0   M0   Q0UANI  0.011241  0.010160  0.007127  0.004751  0.000810  ‐.0008076.14170  0.      ‐.044  0.     0.      ‐.052  0.     0.     ‐.043  0.0.     0.006  0.     0.     0.     0.027  0.ATOMS     30

XYZ Pval =valence         Plm = multipole populations13

R‐factor drops

Step  13     Compute  a  Static  Deformation  Electron Density map

Choose appropriate(last)molecular file

14

Step  14    Refinement  of  all parameters

‐ Block diagonal & damp : refine all parameters together

‐ Else : refine them successively

Further  R‐factor drop

15

Step  15    Deconstrain charge density

Removes•Atoms equivalencies : similar atoms have same charge density•Local symmetry of multipoles 

16

More variables=>R‐factor drop

Step  16    Refinement  of  all   parameters  till  convergence

Check max Shift/sigma evolutionCheck R‐factor evolution

17

Step  17     Check  Static  Deformation  Electron Density   2D maps

Choose Triplets of connected atoms

to define planes18

Step  18      Fast  Fourier  Transform   3D map

Residual Electron Density   map in unit cell

19

Step  19      Stereochemical  analysis  in MoPro

Refine at firstStructure(LS) to obtain sigmasof distances

20

refinedATOM1               ATOM2        SYM2       DIST       sigDIST   xyz  xyzO1    thy    1  ‐‐ C1    thy    1             1.239082   0.000175   +++ +++O2    thy    1  ‐‐ C2    thy    1             1.245673   0.000163   +++ +++O3    thy    1  ‐‐ C6    thy    1             1.428634   0.000135   +++ +++Etc….

Step  20       2D  map  of   Electrostatic  Potential  

21

Augment  dimensionsof planefor a  wider picture

Step  21       Generate  a dimer  in  MoProViewer 

Click right on view

Keep a dimer like  55501 + 46502

Ortep symmetry code46502

Translation ‐1a + 1b + 0c & symmetry #024→‐1    6→+1   5→+0 

22

Step  22       Search  Intermolecular  critical  points    

MoProViewer shows  CPs  &  bond paths

23

for a fast calculation => Searcharound 1 atom only(e.g. H11 ) 

Step  23       Compute  electrostatic  interaction  energy  of  a dimer   

2)  Select  one molecule  (shift+mouse)

Right click, Selection / SAVE selection

3) Invert  Selection  

1)  Click  on  Energy tool  of MoProViewer 

24

4) Run VMoPro energy calculation  

Step  24       Discover   the  Tools  of  MoProViewer

Stereo‐chemistry

Show local axes systemfor multipolesorientation

EquivalenceConstraints of atomic charge density

Compute 3D map

Compute 2D map

Uij Thermal ellipsoids

Moveatoms

Critical points

25

Dipolemoment

26

Step  25      ELMAM2   Database transfer 

Useful for a  protein  or  an organic molecule  structure at  usual  atomic resolution    d > 0.6  Å or     s < 0.8 Å‐1

Check the resulting   Static  Deformation  Electron  Densiy  maps

Step  25       Discover   the   MoPro   Menus 

27

Commands  are classified  and  visible in   menus