Mosbaek CEV flow regulator · 2015. 5. 26. · February 2015 Mosbaek CEV flow regulator...

Post on 07-Aug-2021

1 views 0 download

transcript

Verification Report

February 2015

Mosbaek CEV flow regulator Verification Report

This report has been prepared under the DHI Business Management System certified by DNV to comply with ISO 9001 (Quality Management)

Approvedby

StenLindberg(Headofdepartment,DHI)

Approvedby

PeterFritzel(Verificationresponsible,ETADanmark)

Mosbaek CEV flow regulator Verification Report

Prepared for Mosbaek A/S Represented by Torben Krejberg, Technical Director

Test facility

ProjectNo 11530013

Classification Public

Version Final

Authors MetteTjenerAndersson,DHI

Verification Report Mosbaek i

Contents

1  Introduction...................................................................................................................................................3 1.1  Nameoftechnology.............................................................................................................................................................3 1.2  Nameandcontactofproposer.......................................................................................................................................3 1.3  Nameofverificationbodyandresponsibleofverification...............................................................................3 1.4  Verificationorganisationincludingexperts.............................................................................................................4 1.5  Verificationprocess............................................................................................................................................................4 1.6  Deviationsfromtheverificationprotocol.................................................................................................................6 

2  Descriptionoftechnologyandapplication..........................................................................................8 2.1  Summarydescription.........................................................................................................................................................8 2.2  Intendedapplication...........................................................................................................................................................9 2.2.1  Matrix/matrices....................................................................................................................................................................9 2.2.2  Purpose(s)...............................................................................................................................................................................9 2.3  Verificationparametersdefinition............................................................................................................................10 2.3.1  FlowatHbumpandHdesign.................................................................................................................................................10 2.3.2  FlowreductionatHdesign.................................................................................................................................................10 

3  Evaluation.....................................................................................................................................................11 3.1  Calculationofverificationparametersperformance........................................................................................11 3.2  Evaluationoftestquality...............................................................................................................................................11 3.2.1  Controldata.........................................................................................................................................................................11 3.2.2  Audits.....................................................................................................................................................................................11 3.2.3  Deviations.............................................................................................................................................................................12 3.3  Verificationresults...........................................................................................................................................................12 3.3.1  Performanceparameters...............................................................................................................................................12 3.3.2  FlowatHbumpandHdesign.................................................................................................................................................12 3.3.3  FlowreductionatHdesign.................................................................................................................................................13 3.3.4  Operationalparameters.................................................................................................................................................13 3.3.5  Additionalparameters....................................................................................................................................................14 3.3.5.1  Usermanual.........................................................................................................................................................................14 3.3.5.2  Requiredresources..........................................................................................................................................................15 3.3.5.3  Occupationalhealthandenvironmentalimpact.................................................................................................17 3.4  RecommendationfortheStatementofVerification..........................................................................................17 3.4.1  Technologydescription..................................................................................................................................................17 3.4.2  Application...........................................................................................................................................................................18 3.4.2.1  Matrix.....................................................................................................................................................................................18 3.4.2.2  Purpose..................................................................................................................................................................................18 3.4.2.3  Conditionsofoperationanduse................................................................................................................................18 3.4.2.4  Verificationparametersdefinitionsummary.......................................................................................................18 3.4.3  Testandanalysisdesign................................................................................................................................................18 3.4.3.1  Laboratoryorfieldconditions....................................................................................................................................18 3.4.3.2  Matrixcomposition..........................................................................................................................................................20 3.4.3.3  Testandanalysisparameters......................................................................................................................................20 3.4.3.4  Testandanalysismethodssummary.......................................................................................................................20 3.4.3.5  Parametersmeasured.....................................................................................................................................................20 3.4.4  Verificationresults...........................................................................................................................................................21 3.4.4.1  Performanceparameters...............................................................................................................................................21 3.4.4.2  Operationalparameters.................................................................................................................................................21 3.4.4.3  Environmentalparameters..........................................................................................................................................21 3.4.4.4  Additionalparameters....................................................................................................................................................21 3.4.5  Additionalinformation...................................................................................................................................................22 3.4.6  Qualityassuranceanddeviations..............................................................................................................................22 

ii Verification Report Mosbaek

4  Qualityassurance.......................................................................................................................................23 

5  References....................................................................................................................................................25 

Figures Figure1‐1  Organisationoftheverificationandtest.......................................................................................................................................4 Figure2‐1  SketchofCEVflowregulatorinstalledinwell.SketchprovidedbyMosbaek...............................................................8 Figure2‐2  Graphicshowingthegeneralvortexbrakeeffectonwateroutflow,withCEVsoperatingat78%and100%

efficiencyandwaterinflowtowelllargerthanoutflowthoughCEV(wellisfillingup).Graphprovidedby

Mosbaek.......................................................................................................................................................................................................9 Figure3‐1  CorrelationbetweenQinflowandQbumpgivenforalltestedCEVs........................................................................................13 Figure3‐2  A)SketchofCEVflowregulatorinstalledinwell.B)Graphicshowingthegeneralvortexbrakeeffecton

wateroutflow,withCEVsoperatingat78%and100%efficiencyandwaterinflowtowelllargerthan

outflowthoughCEV(wellisfillingup).BothprovidedbyMosbaek..............................................................................17 Figure3‐3  Sketchoftestset‐up.............................................................................................................................................................................19 

Tables Table1‐1  Simplifiedoverviewoftheverificationprocess.........................................................................................................................6 Table2‐1  SpecificperformanceclaimsfromtheproposeronQbumpandQdesign..............................................................................10 Table2‐2  SpecificperformanceclaimsbytheproposeronflowreductioncomparedtonoCEVinstalledinwell.........10 Table3‐1  VerifiedperformanceonQbump.+)BeawarethattheresultsofQbumpareuniquelyinfluencedbyQinflow,see

later.............................................................................................................................................................................................................12 Table3‐2  VerifiedperformanceonQdesign.*)basedontwotestsonly................................................................................................13 Table3‐2  VerifiedperformanceonflowreductioncomparedtonoCEVinstalledinwell.........................................................13 Table3‐3  Evaluationofusermanual.................................................................................................................................................................14 Table3‐4  Listofcapitalcostitemsandoperationandmaintenancecostitemsperproductunit..........................................16 Table4‐1  QAplanfortheverification...............................................................................................................................................................23 

Appendices A TermsanddefinitionsB SpecificVerificationProtocolC TestplanD TestreportE Auditreports

Archiving:Allstandardprojectfiles(documents,etc)arearchivedatETADanmark.Anyotherprojectfiles(set‐upfiles,forcingdata,model

output,etc.)arearchivedwiththeinstituteperformingthetestsoranalysis.

Verification Report Mosbaek 3

1 Introduction Environmentaltechnologyverification(ETV)isanindependent(thirdparty)assessmentoftheperformanceofatechnologyoraproductforaspecifiedapplicationunderdefinedconditionsandqualityassurance.Theobjectiveofthisverificationistoevaluatetheperformanceofaverticalcentrifugalflowregulatorforstormwater.ThisVerificationReportandtheverificationofthetechnologyarebasedontheSpecificVerifica‐tionProtocol,TestPlanandTestReportfortheMosbaekCEVflowregulator,includedasAp‐pendixB,DandE.

1.1 Name of technology Verticalcentrifugalflowregulator,CEV(CEntrifugalVertical),producedbyMosbaekA/S.

MosbaekproducesCEVsforflowcapacitiesfrom0.2l/sto80l/s.Theverificationwillcoverver‐ificationtestoffourspecificCEVdimensionswithinthisrange.

MosbaekhaveselectedfourspecificCEV‐modelstorepresenttheirCEVtechnology,namely:

CEV1.4l/s@1.00m–100%

CEV4.9l/s@1.50m–100%

CEV10.5/s@2.00m–78%

CEV10.5l/s@2.00m–100%

ThenameoftheCEVindicatesthedesignedmaximumflowofforexample1.4l/sandthecorre‐latingmaximumpressureheightofforexample1.00m.Thepercentage(100%and78%)indi‐catesthepercentageofthedesignflowatthepoint/bumpwherethevortexisformed.

1.2 Name and contact of proposer MosbaekA/SVærkstedsvej204600KøgeDenmarkContact:TorbenKrejberg,e‐mail:tk@mosbaek.dk,phone:+4556638580Mosbaekwebsite:www.mosbaek.dk

1.3 Name of verification body and responsible of verification ETADanmarkA/SGöteborgPlads12150NordhavnDenmarkVerificationresponsible:PeterFritzel(PF),email:pf@etadanmark.dk,phone+4572245900

4 Verification Report Mosbaek

Appointedverificationexpert:MetteTjenerAndersson(MTA),e‐mail:mta@dhigroup.com,phone:+4545169148

1.4 Verification organisation including experts TheverificationwasconductedbyETADanmarkA/SincooperationwithDanishCentreforVer‐ificationofClimateandEnvironmentalTechnologies,DANETV,whichperformsindependentverificationoftechnologiesandproductsforthereductionofclimatechangesandpollution.

TheverificationisconductedtosatisfytherequirementsoftheETVschemeestablishedbytheEuropeanUnion(EUETVPilotProgramme)[1].

TheverificationwascoordinatedandsupervisedbyETADanmark,assistedbyanappointedverificationexpert,whiletestswerecoordinatedandsupervisedbyDHIwiththeparticipationoftheproposer,Mosbaek.ThetestingwasconductedatthepremisesofMosbaekinKøge,whereatestfacilityhasbeenconstructed.

Aninternalandanexternalexpertareassignedtoprovideindependentexpertreviewoftheplanning,conductingandreportingoftheverificationandtests:

Internaltechnicalexpert:MortenJustKjølby(MJK),DHI,UrbanandIndustryDept.,e‐mailmjk@dhigroup.com

Externaltechnicalexpert:Verificationprotocol:ProfessorTorbenLarsen(TL),AalborgUniversity,DepartmentofCivilEngineering,e‐mailtl@civil.aau.dk.VerificationReport:IanWalker(IW),WRcplc,e‐mailIan.Walker@wrcplc.co.uk

Thetasksassignedtoeachexpertaregiveninmoredetailinsection4Qualityassurance.

TherelationshipsbetweentheorganisationsrelatedtothisverificationandtestaregiveninFigure1‐1.

Figure 1-1 Organisation of the verification and test.

1.5 Verification process TheprinciplesofoperationoftheDANETVverificationprocessaregiveninTable1‐1

Verification Report Mosbaek 5

Table1‐1.Asitcanbeseen,verificationandtestingaredividedbetweentheverificationandthetestbody.

6 Verification Report Mosbaek

Table 1-1 Simplified overview of the verification process.

Phase Responsible Document

Preliminaryphase Verificationbody QuickScan

Contract

Specificverificationprotocol

Testingphase Testbody Testplan

Testreport

Assessmentphase Verificationbody Verificationreport

StatementofVerification

Qualityassuranceiscarriedoutbyanexpertgroupofinternalandexternaltechnicalexperts.Twoauditsofthetestsystemwereperformed,startingwithaninternalauditbythetestbodyfollowedbyanexternalauditbytheDANETVverificationbodyunderETADanmark.ReferencefortheverificationprocessistheEUETVGeneralVerificationProtocol[1]andETADanmarksinternalprocedure[2].AStatementofVerificationwillbeissuedbyETADanmarkaftercomple‐tionoftheverification.Thisverificationreportwillincludetheotherdocumentspreparedasappendices.

1.6 Deviations from the verification protocol Therewerenodeviationstotheverificationprotocol.

Verification Report Mosbaek 7

8 Verification Report Mosbaek

2 Description of technology and application

2.1 Summary description Theflowregulatortechnologyforextremerainfalleventsisbasedonquicklyreachingthemax‐imumdischargeflowandstayingatorbelowthisvalue.Themaximumdischargeflowistheal‐lowableamountofwaterpassingthroughtheregulatorwithoutcausinganyproblemstothedownstreampipenetwork.

Thetechnologyverifiedistheverticalcentrifugalflowregulator,CEV(CEntrifugalVertical)fromMosbaek.Itisawetmountedvortexflowregulatorforstormwaterwithdesignflowsbetween0.2and80l/s.

TheCEVregulatesthewaterduetothevortexcreatedwhensufficientwaterflowisgoingthroughtheunit.Thevortexiscreatedwhenthewaterflowreachesacertainflowrate.Thevor‐texslowsdownthewaterflowthroughtheCEV.Inthiswaythewaterisstoredinthewellandthewaterflowisthenkeptalmostconstant.AschematicviewoftheCEVinoperationisshowninFigure2‐1.

TheCEVcanbedesignedtofulfildifferentdesigncriteria.Thespecificdesigncriteriaarede‐finedbytheclientandMosbaekincooperationaccordingtothedesignoftheexistingorplannedpipingnetwork.

Figure 2-1 Sketch of CEV flow regulator installed in well. Sketch provided by Mosbaek.

TheCEVsverifiedhaveinflowinthebottomoftheregulator,asshowninFigure2‐1.Thisistoensureproperandequalhydraulicconditions.Furthermore,inastandardinstallationMosbaekwillensurethatinletandoutletarelocatedatthesamelevelinthewell(asdepictedonFigure2‐1)inordertobeabletocontrolthewaterlevelriseinthewelloptimally.

Figure2‐2showstheflowthroughaCEV.Inthe100%casethemaximumoutlet(Qdesign)ismettwice‐firstwherethevortexisformed(thebumponthegraph)andthenatthespecifiedHdesign,whereHdesigniscalculatedfromtheinvertofthedischargepipetothemaximumwaterlevelinthewell.A78%case(asmallerCEVinawellwithsameheight)withthesameHdesignisalsoshown;herethebumpoccursataflowof78%ofQdesign.

Verification Report Mosbaek 9

Figure 2-2 Graphic showing the general vortex brake effect on water outflow, with CEVs operating at 78% and 100% efficiency and water inflow to well larger than outflow though CEV (well is filling up). Graph provided by Mosbaek.

Theoptimalsolution(100%),whereQbumpequalsQdesign,giveslessrestrictionatlowheadsal‐lowingabetterflowduringnormaloperatingsituationsandtherebylessriskofblockingdown‐stream.

2.2 Intended application Theintendedapplicationofthetechnologyforverificationisdefinedintermsofthematrixandthepurpose.

2.2.1 Matrix/matrices TheCEVisforstormwaterandcertaintypesofindustrialwastewaters.TheCEVisinstalledbe‐forethecombinedsystem(withstormwaterandwastewater),andistherebyrestrictingtheamountofstormwaterintothecombinedsystem.Theverificationthereforeonlycoversthema‐trixstormwater.

2.2.2 Purpose(s) Thepurposeofthetechnologyistostorestormwateratappropriateplacesbeforeenteringthepipingsystemduringstormwaterevents.TheCEVisinstalledinwellsandbasinsdependingonthepipingnetwork.

10 Verification Report Mosbaek

2.3 Verification parameters definition Thereisnoregulationtofulfilforthistechnology.Theinitialclaimsfromtheproposerarematchingtheclaimsfromothervendors.Noneedhasbeenfoundtoaddanyadditionalperfor‐manceparameterstothoseinitiallyselectedbytheproposer.

MosbaekhastwotypesofclaimsfortheirCEVs,bothdescribedbelow.

2.3.1 Flow at Hbump and Hdesign MosbaekhasspecifiedtheperformanceoffourselectedmodelsoftheCEVthroughperformancegraphsandspecifiedthefollowingspecificclaims(fordetails,pleaseconsultAppendixB):

100%model: Qdesign±5%ismetatHbumpandHdesign

X%model: X%ofQdesign±5%ismetatHbump

Qdesign±5%ismetatHdesign

SpecificvaluesforeachofthefourselectedCEVsarelistedinTable2‐1.

Table 2-1 Specific performance claims from the proposer on Qbump and Qdesign.

CEV model Qbump (l/s) Qdesign (l/s) CEV1.4l/s@1.00m–100% 1.4±5% 1.4±5%

CEV4.9l/s@1.50m–100% 4.9±5% 4.9±5%

CEV10.5l/s@2.00m–78% 8.2±5% 10.5±5%

CEV10.5l/s@2.00m–100% 10.5±5% 10.5±5%

2.3.2 Flow reduction at Hdesign MosbaekhasfurtherspecifiedtheirclaimedreductionoftheflowatHdesigncomparedtoawellwithnoflowregulator(equaltoaholeinastraightwall,withnoadditionalpiping).

Mosbaekclaimsthefollowing:

AMosbaekCEV100%modelcanreducetheflowbyafactorof4.25atQdesign

PerformingtestswherethetestwellisfilleduptoHdesignwithnoCEVwillrequireveryhighwaterflow.ThereforthisclaimwillbeverifiedusingonlythesmallestofthefourCEVsusedinthetests.SpecificperformanceclaimislistedinTable2‐2.

Table 2-2 Specific performance claims by the proposer on flow reduction compared to no CEV installed in well.

CEV model Orifice diameter (Ø) Flow reduction factor at Hdesign (mm) CEV1.4l/s@1.00m–100% DiametercorrespondingtoCEV

1.4l/s@1.00m–100%outlet

4.25

Verification Report Mosbaek 11

3 Evaluation DetaileddescriptionsofthetestdesignandtestresultsarefoundintheTestPlan(AppendixC)andTestReport(AppendixD).

3.1 Calculation of verification parameters performance DetailedinformationonhowtocalculatetheverificationparametersareincludedintheSpecificVerificationProtocolinAppendixB.

3.2 Evaluation of test quality

3.2.1 Control data TestsystemcontrolincludedleakagetestandforCEV1.4l/s@H=1.00m–100%investigationofthevariationwasincludedfortestscarriedoutwithidenticalinletflows.Thevariationwasmin‐imalandfarlessthan10%,whichmeans‐accordingtotheVerificationProtocol(AppendixB),section5.1.4‐thattriplicatetestswerenotneededfortheremainingCEVs.

Testperformanceauditincludedreviewofcalibrationcertificatesforpressuretransducersandflowmeters.TheyarevalidandcanbefoundinAppendixtotheTestPlan(AppendixC).Inaddi‐tioncalibrationtestswereperformedofpressuretransducersonbothinletandoutletside.

Theoutflowcouldnotbemeasureddirectlyduetoairandcirculationintheoutlet.Insteadmeasurementofheadintheoutlettankandoftheoverflowfromtheoutlettankwheremeas‐ured.Thecalculationtwodifferentmethodswerelisted,seeAppendixBsection6.1Calculationofperformanceparameters.Method2wasexpectedtomostprecise,whilemethodshouldbeusedforcontrol.Formethod1thetimeserieshadtobesubjectedtointensiveaveragingtogetreadableresults.Acomparisonbetweentheresultsobtainedbymeansofmethod1andmethod2foroneofthemodeltestshasbeenperformed.TheresultsareshownintheAppendixDoftheTestReport(AppendixDtothisreport).Itappearsthatthereis,apartfromthefluctuations,agoodagreementbetweenthetwomethods.However,sincethequalityoftheresultswithmeth‐od2wasveryreliableand,whiletheresultsobtainedbymeansofmethod1aresubjecttolargefluctuations,itwaschosentousemethod2only.

3.2.2 Audits Duringtestingandinternaltest,asystemauditwasperformedbyJesperFuchsfromDHIon29September2014.TheverificationbodyETADenmark,representedbyPeterFritzel,performedatestsystemauditon2October2014.

Conclusionsoftheinternalaudit(JesperFuchs):

“Thetestisperformedinaccordancewiththetestplanandcarriedoutinasafemanner.Han‐dlingandstorageofdataissafe”.

ConclusionsoftheauditbyETADenmark(PeterFritzel):

“Thereisconsistencywiththetestplanandhandlingofmeasurementsiscarriedoutinasafemanner”.

ThefullauditreportscanbefoundinAppendixE.

12 Verification Report Mosbaek

3.2.3 Deviations Therewerefourdeviationstothetestplan.ThedescriptionofthesecanbefoundinfullinAp‐pendixCoftheTestReportincludedasAppendixEtothisreport.Asummaryofthedeviationsisasfollows:

1. Insteadofestablishingthezerolevelintheinlettankforeachtest,acommonzeroscanwasperformedforeachCEVtype.Thiszeroscanwascarriedoutasanindividualtestinsteadofanintegratedpartofeachtest.

2. ThelowestinflowinthetestswithCEV1.4l/s@1.0mwascarriedoutwithtoolowin‐flow,1.79l/sinsteadof1.9l/s.Withgoodaccuracytheinletflow,whichwillresultinawaterlevelriseof0.5mm/s,canbefoundbyinterpolation.Suchinterpolationshowsthataninflowofapproximately2.8l/swillresultinawaterlevelriseof0.5mm/s.ThecorrespondingQbumpwouldbeapproximately1.28l/s(seeFigure3.8inTestReport(AppendixE)).

3. Forall100%CEVsthelargestinflowsgavelargerwaterlevelrisethan1.5mm/s,whichwasthelargestwaterlevelrisetobetestedandapredefinedoperationalparameter.Duringthetestattemptwasmadetocomecloseto1.5mm/s,butduetothecharacterofthecurve,withtherapidbump,itwasdifficultinadvancetoestimatethewaterlevelrise.Withgoodaccuracytheinletflows,whichwillresultinawaterlevelriseof1.5mm/s,canbefoundbyinterpolation.Doingthisisitnicetohaveameasuredvaluesofwaterlevelriseisabove1.5mm/s.Interpolationsshowfor:

• CEV1.4l/s@1.0mthatsuchawaterlevelrisewouldbeobtainedforaninflowofapproximately6.1l/s.ThecorrespondingQbumpwouldbeapproximately1.44l/s(seeFigure3.8intheTestReport(AppendixE))

• CEV4.9l/s@1.5mthatsuchawaterlevelrisewouldbeobtainedforaninflowofapproximately9.2l/s.ThecorrespondingQbumpwouldbeapproximately4.93l/s(seeFigure3.12inTestReport(AppendixE))

• CEV10.5l/s@2.0mthatsuchawaterlevelrisewouldbeobtainedforanin‐flowofapproximately13.9l/s.ThecorrespondingQbumpwouldbeapproxi‐mately10.4l/s(seeFigure3.16inTestReport(AppendixE))

4. Thetestwiththeorificewascarriedoutwithalargerinflowthanpredefined.Thiswasdone,astheQ–Hrelationforanorificeisindependentofthewaterlevelincrease,whichalsoisdocumentedbycomparingwiththetheoreticalrelation,seeFigure3.23intheTestReport(AppendixE).

3.3 Verification results

3.3.1 Performance parameters Theverifiedperformanceforthetwoparametersislistedbelow.Theresultsaretransferreddi‐rectlyfromtheTestReport(AppendixE).

3.3.2 Flow at Hbump and Hdesign SpecificperformanceforeachofthefourselectedCEVsislistedinTable3‐1andTable3‐2.

Table 3-1 Verified performance on Qbump. +) Be aware that the results of Qbump are uniquely influenced by Qinflow, see later.*) For this flow the water level rise was only 0.19 mm/s, while the operational requirement was >0.5 mm/s, this is an explanation for the deviation from the expected.

CEV model Inflow in test (l/s)

Qbump (l/s)

Deviation from model characteristics (%)

Verification Report Mosbaek 13

Mean+ Range CEV1.4l/s@1.00m–100% 1.79to6.31 1.34 1.22*–1.45 ‐4.3(‐13*–3.6)

CEV4.9l/s@1.50m–100% 5.89to9.99 4.74 4.50–5.04 ‐3.3(‐8.2–2.9)

CEV10.5l/s@2.00m–78% 8.60to12.97 8.17 7.57–8.74 ‐0.2(‐7.6–6.7)

CEV10.5l/s@2.00m–100% 11.32to15.24 10.18 9.75–10.67 ‐3.0(‐7.1–1.6)

Table 3-2 Verified performance on Qdesign. *) based on two tests only.

CEV model Inflow in test (l/s)

Qdesign (l/s)

Deviation from model characteristics (%)

Mean Range CEV1.4l/s@1.00m–100% 1.79to6.31 1.43 1.42–1.45 2.1(1.4–3.6)

CEV4.9l/s@1.50m–100% 5.89to9.99 4.78 4‐76–4.80 ‐2.4(‐2.9–(‐2.0))

CEV10.5l/s@2.00m–78% 8.60to12.97 10.11 10.09–10.12* ‐3.7(‐3.9–(‐3.6))

CEV10.5l/s@2.00m–100% 11.32to15.24 10.56 10.55–10.56 0.6(0.5–0.6)

Orifice 13.72 6.36 N/A N/A

PleasebeawarethatthereisauniqueinfluenceofQbumbbyQinflow,seeFigure3‐1.

Figure 3-1 Correlation between Qinflow and Qbump given for all tested CEVs.

3.3.3 Flow reduction at Hdesign PerformancecomparedtoawellwithnoflowregulatorislistedinTable3‐3.

Table 3-3 Verified performance on flow reduction compared to no CEV installed in well.

CEV model Orifice diameter (Ø) Flow reduction factor at Hdesign (mm) CEV1.4l/s@1.00m–100% DiametercorrespondingtoCEV

1.4l/s@1.00m–100%outlet

4.45

MosbaekCEV1.4l/s@1.00m‐100%isverifiedtoreducetheflowbyafactorof4.45atQdesign.

3.3.4 Operational parameters Duringoperationthefollowingparametersweremeasured:

0

2

4

6

8

10

12

0 5 10 15 20

Qbump (l/s)

Qinflow (l/s)

CEV 1.4 ‐ 100 %

CEV 4.9 ‐ 100 %

CEV 10.5 ‐ 78 %

CEV 10.5 ‐ 100 %

14 Verification Report Mosbaek

Inflow(l/s)

Waterlevel/pressureinregulatorwell(mH2O/Pa)

Waterlevel/pressureintheoutlettank(mH2O/Pa)

Outletfromtheoutlettank(l/s)

ThesedatahavecreatedcurvesshownintheTestReport,section3Testresults(AppendixE).

Duringthetesttheaveragewaterlevelmustbewithin0.5and1.5mm/s,sincethisiscommonvaluesinrunoffsystems.

3.3.5 Additional parameters

3.3.5.1 User manual Theverificationcriterionfortheusermanualisthatthemanualdescribestheuseoftheequip‐mentadequatelyandisunderstandableforthetypicaltestcoordinatorandtesttechnician.Thiscriterionwasbasedonanumberofspecificpointsofimportance,seeTable3‐4fortheparame‐terstobeincluded.

Adescriptioniscompleteifallessentialstepsaredescribed,iftheyareillustratedbyafigureoraphoto,whererelevant,andifthedescriptionsareunderstandablewithoutreferencetootherguidance.

Mosbaekhasprovided:

CentrifugalvalveCE/Vwetmounted(Generalinformation)

InstallationInstruction.MosbaekFlowRegulators.TypeCEV‐KPS–Sealing

MaintenanceandInspectionInstructions.MosbaekFlowRegulators.TypeCEV‐KPS–Sealing

Table 3-4 Evaluation of user manual.

Parameter Complete description

Summary description

No description Not relevant

Product

Principleofoperation √

Intendeduse √

Performanceexpected √

Limitations √

Preparations

Unpacking √

Transport √

Assembly √

Installation √

Functiontest √

Operation

Stepsofoperation √

Pointsofcaution √

Accessories √

Maintenance √

Troubleshooting √

Safety

Chemicals √

Power √

Verification Report Mosbaek 15

3.3.5.2 Required resources Thecapitalinvestmentandtheresourcesforoperationandmaintenancecouldbeseenasthesustainabilityoftheproductandwillbeitemizedbaseduponadetermineddesign[3],seeTable3‐5fortheitemsthatwillbeincluded.ThedesignbasisconsistsofoneinstalledCEVinanexistingwell.AllcostitemsrelevantfortheMosbaekCEVsarelisted.Notethattheactualcostforeachitemisnotcompiledandreported.

16 Verification Report Mosbaek

Table 3-5 List of capital cost items and operation and maintenance cost items per product unit.

Item type Item Number/duration

Capital

Sitepreparation None

Buildingsandland None

Equipment TheCEVandmountingfromMosbaekTighteningmaterialandbolts

1

Utilityconnections Rainwatersewersystemandwells 1

Installation Tobeinstalledbysewercontractor 1day

Startup/training

Permits None

Operationandmaintenance

Materials,includingchemicals None

Utilities,includingwaterandenergy None

Labor Regularinspectionanddrainageof

sump/sandcatcher

1day

Wastemanagement Sump/sand AsforotherwellswithnoCEV

Permitcompliance None

EvaluationofthefollowingsubjectshasbeenperformedbasedoninformationgainedfromMosbaek:

• Resourcesusedduringproductionoftheequipmentinthetechnology

TheCEVandtheirmountingareproducedfromstainlesssteel,grade1.4404/316L.

Forthetestedproductsincl.mountingtheweightsare:

CEV1.4l/s@1.0m100%:5.9kg

CEV4.9l/s@1.5m100%:11.5kg

CEV10.5l/s@2.0m78%:21.5kg

CEV10.5l/s@2.0m100%:25.1kg

80%ofthesteelontheworldmarketisreusedmaterial.ThemainpartofthesteelinDenmarkisimportedfromotherEuropeancountries,whiletherestismainlyfromTaiwan,IndiaandChina.Dependingonthedistancethefreightisbyshiporbytruck.FortheEuropeanmarkedthetransportismainlybytruck.MosbaekpurchasessteelfromDanishdistributorssuchas:DacapoStainless,Lemvigh‐Müller,SanistålandDam‐stahl.

Theaverageenergyconsumptionforthefinalproductis4.1kWh/kg.

• Longevityoftheequipment

Theregulatorsaredesignedtolastaslongastheothercomponentsinasewagesystem,approx.50years.Aregulatorwillnotneedtobereplacedunlessinspectionshowscon‐siderablewearandtear.

• Robustness/vulnerabilitytochangingconditionsofuseormaintenance

Theregulatorisrobusttochangesintemperatureandenvironment.Asteeperslopeonthecharacteristiccurvegivesrobustnesstowardschangesinpressurehead.Largerori‐ficeopening,comparedtoothercompetingsolutions,giverobustnesswithrespecttoclogging.Maintenanceschemeshouldbeadjustedaccordingtochangesinconditionconcerningthequalityofthewater.Maintenanceisavisualcheckoftheconditionoftheregulatorandtoremovesignsofclogging.

Verification Report Mosbaek 17

• Reusability,recyclability(fullyorpartly)andendoflifedecommissioninganddisposal

Aregulatorcanbereusedinanotherlocationwithsimilarconditionsoradjustedtofitotherconditions.Ifreuseisnotpossible,theregulatorcanbesoldasscrapandmoltenintonewsteel.Itis100%isrecyclable.

3.3.5.3 Occupational health and environmental impact Therisksforoccupationalhealthandfortheenvironmentassociatedwiththeuseoftheprod‐uctswillbeidentified.Alistofchemicalsclassifiedastoxic(T)orverytoxic(Tx)forhumanhealthand/orenvironmentallyhazardous(N)(inaccordancewiththedirectiveonclassificationofdangeroussubstances[4])willbecompiled.Thetighteningmaterialusedforinstallationischosenbythesewercontractor.Themainlyusedmaterialissealanttapeorwaterproofsilicone,whicharebothunclassified.

Alloperationsinwellsaresubjecttosafetyrisk,andstandardsafetyprecautionshavetobetak‐enaccordingly.

3.4 Recommendation for the Statement of Verification

3.4.1 Technology description Thetechnologyverifiedistheverticalcentrifugalflowregulator,CEV(CEntrifugalVertical)fromMosbaek.Theflowregulatortechnologyforextremerainfalleventsisbasedonquicklyreachingthemaximumdischargeflow,whereitcreatesavortexmakingitstayatorbelowthisdischargeflowwhiletheremainingwaterisstoredinthewell.AschematicviewoftheCEVwithinflowinthebottomisshowninFigure3‐2a.

Figure 3-2 A) Sketch of CEV flow regulator installed in well. B) Graphic showing the general vortex brake effect on water outflow, with CEVs operating at 78% and 100% efficiency and water inflow to well larger than outflow though CEV (well is filling up). Both provided by Mosbaek.

Figure3‐2bshowstheflowthroughaCEV.Witha100%model,themaximumoutlet(Qdesign)ismettwice,firstwherethevortexisformed(thebumponthegraph)andthenatthespecifiedHdesign,whereHdesigniscalculatedfromtheinvertofthedischargepipetothemaximumwaterlevelinthewell.A78%modelisalsoshown;herethebumpoccursataflowof78%ofQdesign.

MosbaekhasselectedfourmodelstorepresenttheirCEV‐series.Themodelsare;

CEV1.4l/s@1.00m–100%

CEV4.9l/s@1.50m–100%

CEV10.5l/s@2.00m–78%

18 Verification Report Mosbaek

CEV10.5l/s@2.00m–100%

3.4.2 Application

3.4.2.1 Matrix TheCEVisinstalledbeforethecombinedsystem(withstormwaterandwastewater)andisre‐strictingstormwaterinflowtothecombinedsystem.Theverificationcoversstormwater.

3.4.2.2 Purpose Thepurposeofthetechnologyistostorestormwateratappropriateplacesbeforeenteringthepipingsystemduringstormwaterevents.TheCEVisinstalledinwellsandbasinsdependingonthepipingnetwork.

3.4.2.3 Conditions of operation and use Maintenanceisneededregularlyasavisualcheckoftheconditionoftheregulatorandtore‐movesignsofclogging.

3.4.2.4 Verification parameters definition summary Twotypesofparametershavebeenverified:

1. Outflow(l/s)atHbumpandHdesign

2. FlowreductionatHdesign

3.4.3 Test and analysis design Thetestwasdesignedforthisverification.Noexistingdatahavebeenincluded.

3.4.3.1 Laboratory or field conditions Thetestwasperformedatatestset‐upatMosbaek’spremisesinKoege,Denmark,seeFigure3‐3.

ThefigureissuggestedtobeanappendixtotheStatementofVerification.

Verification Report Mosbaek 19

Figure 3-3 Sketch of test set-up.

Theset‐upconsistsofawell(regulatorwell)placedonabase;theCEVregulatorismountedinthiswell.Theregulatorwellisindirectconnectionwithalargediametertank(inlettank),throughapipe,positionedjustoppositetheCEVoutlet.Thewaterlevelsintheregulatorwellandtheinlettankareaccordinglyidentical.Thisset‐upisestablishedinordertosecurethatthe

20 Verification Report Mosbaek

increaseofthewaterlevelintheregulatorwellcanbecontrolledandlimitedstillwithareason‐ablehighflowratetothewell.TheoutletconnectiongoesthroughtheCEVintheregulatorwelltotheoutlettank.Apressuretransducerismountedinthebaseoftheregulatorwell.Onthebaseoftheregulatorwell,aPlexiglasriserismountedinordertofollowthewaterlevelinthewellduringtesting.

Theflowtotheinlettankisfedatthetopofthetankthroughapipeplacedinternallyinthetankbymeansofapump,whichispumpingwaterfromafeedingtank.Theflowfromthefeedingtanktotheinlettankismeasuredbymeansoftheflowmeter.Thewaterlevelinthefeedingtankiskeptconstantbypumpingwaterfromacentralreservoirtothefeedingtank;anoverflowweirensuresthatthewaterlevelinthistankiskeptalmostconstant.Inthisway,itispossibletokeepanalmostconstantpressureheadatthepumpandthusanalmostconstantflow.

Fromtheregulatorwell,thewaterflowsthroughtheCEVtotheoutlettank.Theoutlettankhasapressuretransducermonitoringthewaterlevelinthistank.Theoutletflowfromtheoutlettankismeasuredbymeansofaflowmeter.

3.4.3.2 Matrix composition Theusedwaterisfromanoutdoorreservoir.

3.4.3.3 Test and analysis parameters Thefollowingtest‐runswereperformed.

CEV model Flow 1 Flow 2 Flow 3 Flow 4 Flow 4’ Flow 4’’ CEV1.4l/s@1.00m–100% 1.79 3.12 4.80 6.31 6.18 6.25

CEV4.9l/s@1.50m–100% 5.89 6.52 8.20 9.99

CEV10.5l/s@2.00m–78% 8.60 9.77 11.40 12.97

CEV10.5l/s@2.00m–100% 11.32 12.07 13.75 15.24

Orifice 13.72

TestsoftheperformanceatHbumpandHdesignaremarkedinlightorange.

TestoftheflowreductionatHdesignisdonebycomparingtheresultsfromthehatchedtestruns.

TherepetitionofCEV1.4l/s@1.00m–100%(darkbluemarking)isdonetoseeifthereismorethan10%variationbetweenrunswiththesameflow.Therewasverylimitedvariation;there‐foretherepetitionwasnotdoneforothertestruns.

3.4.3.4 Test and analysis methods summary TheinflowandoutflowfromtheCEVwasmeasuredbytheuseofflowmetersandpressuretransducersasdescribedabove.

3.4.3.5 Parameters measured Inflow(l/s)

Waterlevel/pressureinregulatorwell(mH2O/Pa)

Waterlevel/pressureintheoutlettank(mH2O/Pa)

Outletfromtheoutlettank(l/s)

OutflowfromCEViscalculatedbyusingthefollowingequation:

∆ 1000

Verification Report Mosbaek 21

Qoutflow:FlowoutofCEV(l/s) Qoverflow:Overflowfromtheoutlettank(l/s) Aout:Surfaceareaintheoutlettank+riser(m2) Hout:Pressureheadintheoutlettank(mH2O) Δt:TimeforchangingHoutwithΔHout(s)

3.4.4 Verification results

3.4.4.1 Performance parameters TheresultsoftheverificationwithregardstoflowatHbump(Qbump)andatHdesign(Qdesign)arelistedinthetable.

Basedontheresultsfromatestwith1.4l/s@1.00m‐100%andacorrespondingorifice,itcanbestatedthatMosbaekCEVsareverifiedtoreducetheflowbyafactorof4.45atQdesign.

CEV model Qbump Qdesign Mean+ and range

(l/s) Deviation from model charac-

teristics (%)

Mean and range (l/s)

Deviation from model character-

istics (%) CEV1.4l/s@1.00m–100% 1.34(1.22*–1.45) ‐4.3(‐13*–3.6) 1.43(1.42–1.45) 2.1(1.4–3.6)

CEV4.9l/s@1.50m–100% 4.74(4.50–5.04) ‐3.3(‐8.2–2.9) 4.78(4.76–4.80) ‐2.4(‐2.9–(‐2.0))

CEV10.5l/s@2.00m–78% 8.17(7.57–8.74) ‐0.2(‐7.6–6.7) 10.11(10.09–10.12)# ‐3.7(‐3.9–(‐3.6))

CEV10.5l/s@2.00m–100% 10.18(9.75–10.67) ‐3.0(‐7.1–1.6) 10.56(10.55–10.56) 0.6(0.5–0.6)

Orifice N/A N/A 6.36 N/A

+) Be aware that the results of Qbump are uniquely influenced by Qinflow

*) For this flow the water level rise was only 0.19 mm/s, while the operational requirement was >0.5 mm/s, this is an explanation for the deviation from the expected.

#) Based on two tests only.

3.4.4.2 Operational parameters Noadditionaloperationalparametersthantheperformanceparametersweremeasured.

ThissubchapterwillthereforenotbeincludedintheStatementofVerification.

3.4.4.3 Environmental parameters Noadditionalenvironmentalparametersthantheperformanceparametersweremeasured.

ThissubchapterwillthereforenotbeincludedintheStatementofVerification.

3.4.4.4 Additional parameters Theusermanualandotherdescriptionsweredescribedascomplete.

ApplicationoftheCEVdoesnotgiverisetoanyspecialriskorcontacttohazardoussubstances.Thoughinstallationinthewellissubjecttosafetyriskasalloperationsinwells,andstandardsafetyprecautionsthereforehavetobetakenaccordingly.

TheCEVsareproducedofstainlesssteel.Today80%ofthestainlesssteelonthemarkedisre‐cycled.ItisimportedfromEuropeandcertainplacesinAsia.ThetestedCEVscontainfrom6‐25kgstainlesssteel,and4.1kWh/kgsteelisusedintheproduction.TheCEVsarereusableor100%recyclable.Theyhavealifetimeof50years.TheaboveinformationisobtainedfromMosbaekA/S.

22 Verification Report Mosbaek

3.4.5 Additional information TheCEVisdesignedtobeeffectivewithinaflowrangeuntilacertainamountofwaterisstoredintheconnectedwellorbasin.Thismeansthatifastormwatereventexceedsthedesigncrite‐ria,thewellorbasinwheretheCEVislocatedwillfloatover.Thissituationisnotincludedintheverification.

TheCEVisdesignedwiththelargestpossibleopeningatthegivenhydraulicsituation.TheCEVismostofteninstalledasdetachableandifrequired,obstaclescanberemovedinthisway.Atlo‐cationswithmanyobstaclesinthewater,theCEVcanbeequippedwithagrid.Alltestsarecar‐riedoutwithwaterwithoutobstacles.

Industrialwastewaterandbackwater(backwardsflowthroughtheCEV)arenotincluded,norarerapidchangesinheadandflow.Suchchangesmayoccurinspecialsituations(e.g.ifpumpsarestartedorstopped).

Characteristicsobtainedfromtheexperimentsareonly100%validforapplicationswhichhavefullgeometricsimilaritywiththesetupdefinedinFigure3‐2a.Forapplicationswithgeometrieswhichdifferfromthisfigure,theactualcharacteristiccandeviatefromthecharacteristicfoundfromtheverificationexperiment.

3.4.6 Quality assurance and deviations Priortotestingwasperformedleakagetestandreviewofcalibrationcertificatesforpressuretransducersandflowmeters.Inaddition,calibrationtestsofpressuretransducerswereper‐formedonbothinletandoutletside.Duringtesting,internalandexternaltestsystemauditswereperformedbyDHIandETADanmark.

Verification Report Mosbaek 23

4 Quality assurance Thepersonnelandexpertsresponsibleforqualityassuranceaswellasthedifferentqualityas‐surancetaskscanbeseeninTable4‐1.AllrelevantreviewsarepreparedusingtheDANETVre‐viewreporttemplate[5].Auditduringtestinghasbeenperformed.

Table 4-1 QA plan for the verification

Internal expert Verification body

Proposer External experts

Initials MJK MTA PF Mosbaek TL/IW

Tasks

Specificverificationprotocol Review Reviewandapprove Review

Testplan Review Approve Reviewandapprove

Testsystemattestsite Audit

Testreport Review Review

Verificationreport Review Review Review

StatementofVerification Acceptance Review

InternalreviewwasconductedbyMortenJustKjølby(MJK)andatestsystemauditwascon‐ductedfollowinggeneralauditproceduresbycertifiedauditorPeterFritzel(PF).OnlytheverificationprotocolandverificationreportrequireexternalreviewaccordingtoEUETVpilotprogrammeGVP[1].Fortheverificationprotocol,externalreviewwasperformedbyTorbenLarsen(TL),whiletheverificationreportandStatementofVerificationhavebeenre‐viewedbyIanWalker(IW).Theverificationbodyhasreviewedandapprovedthetestplanandreviewedthetestreport.ThereviewswereperformedbyMetteTjenerAndersson(MTA),whiletheapprovalwasgivenbyPeterFritzel(PF).

24 Verification Report Mosbaek

Verification Report Mosbaek 25

5 References 1. EUEnvironmentalTechnologyVerificationpilotprogramme.GeneralVerificationProtocol.

Version1.1–July7th,2014.2. ETADanmark.ETV–Verifikation.I30.11,EnvironmentalTechnologyVerification.20‐11‐2013.3. Gavaskar,A.andCumming,L.:CostEvaluationStrategiesforTechnologiesTestedunderthe

EnvironmentalTechnologyVerificationProgram.2001.Battelle.4. EuropeanCommission:CommissionDirectiveonclassification,packagingandlabellingof

dangeroussubstances.2001/59/EC.2001.5. DANETVTestCentreQualityManual,2013.08.13

26 Verification Report Mosbaek

Verification Report Mosbaek

A P P E N D I C E S

Verification Report Mosbaek

Verification Report Mosbaek

A P P E N D I X A

Terms and definitions

Verification Report Mosbaek

Verification Report Mosbaek A-1

ThetermsanddefinitionsusedbytheverificationbodyarederivedfromtheEUETVGeneralVerificationProtocol,ISO9001andISO17020.

Term DANETV Comments on the DANETV approach

Accreditation MeaningasassignedtoitbyRegulation(EC)No

765/2008

ECNo765/2008isonsettingouttherequire‐

mentsforaccreditationandmarketsurveil‐

lancerelatingtothemarketingofproducts

Additionalparameter Othereffectsthatwillbedescribedbutare

consideredsecondary

None

Amendment Isachangetoaspecificverificationprotocolor

atestplandonebeforetheverificationortest

stepisperformed

None

Application Theuseofaproductspecifiedwithrespectto

matrix,purpose(targetandeffect)andlimita‐

tions

Theapplicationmustbedefinedwithapreci‐

sionthatallowstheuserofaproductverifica‐

tiontojudgewhetherhisneedsarecomparable

totheverificationconditions

DANETV Danishcentreforverificationofenvironmental

technologies

None

Deviation Isachangetoaspecificverificationprotocolor

atestplandoneduringtheverificationortest

stepperformance

None

Evaluation Evaluationoftestdataforatechnologyproduct

forperformanceanddataquality

None

Experts Independentpersonsqualifiedonatechnology

inverification

Theseexpertsmaybetechnicalexperts,QA

expertsforotherETVsystemsorregulatory

experts

Generalverificationprotocol

(GVP)

Descriptionoftheprinciplesandgeneralpro‐

ceduretobefollowedbytheEUETVpilotpro‐

grammewhenverifyinganindividualenvi‐

ronmentaltechnology.

None

Matrix Thetypeofmaterialthatthetechnologyis

intendedfor

Matricescouldbesoil,drinkingwater,ground

water,degreasingbath,exhaustgascondensate

etc.

Operationalparameter Measurableparametersthatdefinetheapplica‐

tionandtheverificationandtestconditions.

Operationalparameterscouldbeproduction

capacity,concentrationsofnon‐targetcom‐

poundsinmatrixetc.

None

(Initial)performanceclaim Proposerclaimedtechnicalspecificationsof

product.Shallstatetheconditionsofuseunder

whichtheclaimisapplicableandmentionany

relevantassumptionmade

Theproposerclaimsshallbeincludedinthe

ETVproposal.Theinitialclaimscanbedevel‐

opedaspartofthequickscan.

A-2 Verification Report Mosbaek

Term DANETV Comments on the DANETV approach

Performanceparameters(re‐

visedperformanceclaims)

Asetofquantifiedtechnicalspecificationsrep‐

resentativeofthetechnicalperformanceand

potentialenvironmentalimpactsofatechnolo‐

gyinaspecifiedapplicationandunderspeci‐

fiedconditionsoftestingoruse(operational

parameters).

Theperformanceparametersmustbeestab‐

lishedconsideringtheapplication(s)ofthe

product,therequirementsofsociety(legisla‐

tiveregulations),customers(needs)andpro‐

poserinitialperformanceclaims

Procedure Detaileddescriptionoftheuseofastandardor

amethodwithinonebody

Theprocedurespecifiesimplementingastand‐

ardoramethodintermsofe.g.:equipment

used

Proposer Anylegalentityornatural,whichcanbethe

technologymanufactureroranauthorised

representativeofthetechnologymanufacturer.

Ifthetechnologymanufacturesconcerned

agree,theproposercanbeanotherstakeholder

undertakingaspecificverificationprogramme

involvingseveraltechnologies.

Canbevendororproducer

Purpose Themeasurablepropertythatisaffectedbythe

productandhowitisaffected.

Thepurposecouldbereductionofnitratecon‐

centration,separationofvolatileorganiccom‐

pounds,reductionofenergyuse(MW/kg)etc.

(Specific)verificationprotocol Protocoldescribingthespecificverificationofa

technologyasdevelopedapplyingtheprinci‐

plesandproceduresoftheEUGVPandthe

qualitymanualoftheverificationbody.

None

Standard Genericdocumentestablishedbyconsensus

andapprovedbyarecognisedstandardization

bodythatprovidesrules,guidelinesorcharac‐

teristicsfortestsoranalysis

None

Test/testing Determinationoftheperformanceofaproduct

formeasurement/parametersdefinedforthe

application

None

Testperformanceaudit Quantitativeevaluationofameasurementsys‐

temasusedinaspecifictest.

E.g.evaluationoflaboratorycontroldatafor

relevantperiod(precisionunderrepeatability

conditions,trueness),evaluationofdatafrom

laboratoryparticipationinproficiencytestand

controlofcalibrationofonlinemeasurement

devises.

Testsystemaudit Qualitativeon‐siteevaluationoftest,sampling

and/ormeasurementsystemsassociatedwith

aspecifictest.

E.g.evaluationofthetestingdoneagainstthe

requirementsofthespecificverificationproto‐

col,thetestplanandthequalitymanualofthe

testbody.

Testsystemcontrol Controlofthetestsystemasusedinaspecific

test.

E.g.testofstocksolutions,evaluationofstabil‐

ityofoperationaland/oron‐lineanalytical

equipment,testofblanksandreferencetech‐

Verification Report Mosbaek A-3

Term DANETV Comments on the DANETV approach

nologytests.

Verification Provisionofobjectiveevidencethatthetech‐

nicaldesignofagivenenvironmentaltechnolo‐

gyensuresthefulfilmentofagivenperfor‐

manceclaiminaspecifiedapplication,taking

anymeasurementuncertaintyandrelevant

assumptionsintoconsideration.

None

A-4 Verification Report Mosbaek

Verification Report Mosbaek

A P P E N D I X B

Specific Verification Protocol

Verification Report Mosbaek

Verification Report Mosbaek

A P P E N D I X C

Test Plan

Verification Report Mosbaek

Verification Report Mosbaek

A P P E N D I X D

Test Report

Verification Report Mosbaek

Verification Report Mosbaek

A P P E N D I X E

Audit reports

Verification Report Mosbaek