Multi scale shape optimization under uncertainty · Multi scale shape optimization under...

Post on 21-Sep-2020

4 views 0 download

transcript

Multi scale shape optimization under uncertainty

Sergio Conti 1 Harald Held 1 Martin Pach1 Martin Rumpf 2

Rüdiger Schultz 1

1Department of MathematicsUniversity Duisburg-Essen

{conti,held,pach,schultz}@math.uni-duisburg.de

2Institute for Numerical SimulationRheinische Friedrich-Wilhelms-Universität Bonn

martin.rumpf@ins.uni-bonn.de

SPP1253 Workshop Hamburg 2008

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 1 / 33

Outline

1 Introduction

2 Two-Stage Stochastic ProgrammingTwo-Stage Stochastic Linear Programming FormulationRandom Shape Optimization Problem

3 Level set methodShape gradientLevel set method

4 Numerical ResultsTest SettingExamples

5 ExtensionTopological Derivative

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 2 / 33

Conceptual sketch

D

Γ0

ΓN

ΓD

O

Figure: General setting in 2D

Information Constraintdecide O −→ observe f (ω), g(ω) −→ decide u = u(O, ω)

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 3 / 33

Conceptual sketch

D

Γ0

ΓN

ΓD

O

Figure: General setting in 2D

Information Constraintdecide O −→ observe f (ω), g(ω) −→ decide u = u(O, ω)

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 3 / 33

Linear elasticity model

The displacement u is given by the equation system

PDE −div(Ae(u)) = f in O,u = 0 on ΓD,

(Ae(u))n = g on ΓN

Elastic body O ⊂ R3

∂O = ΓN ∪ ΓD, ΓD 6= ∅

Volume forces f in ONeumann forces g on ΓN

where e(u) = 12 (∇u +∇uT) is the linearized strain tensor

and Hooke’s law

Aξ = 2µξ + λ(trξ)Id, for any symmetric matrix ξ

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 4 / 33

Linear elasticity model

The displacement u is given by the equation system

PDE −div(Ae(u)) = f in O,u = 0 on ΓD,

(Ae(u))n = g on ΓN

Elastic body O ⊂ R3

∂O = ΓN ∪ ΓD, ΓD 6= ∅

Volume forces f in ONeumann forces g on ΓN

where e(u) = 12 (∇u +∇uT) is the linearized strain tensor

and Hooke’s law

Aξ = 2µξ + λ(trξ)Id, for any symmetric matrix ξ

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 4 / 33

Linear elasticity model

The displacement u is given by the equation system

PDE −div(Ae(u)) = f in O,u = 0 on ΓD,

(Ae(u))n = g on ΓN

Elastic body O ⊂ R3

∂O = ΓN ∪ ΓD, ΓD 6= ∅

Volume forces f in ONeumann forces g on ΓN

where e(u) = 12 (∇u +∇uT) is the linearized strain tensor

and Hooke’s law

Aξ = 2µξ + λ(trξ)Id, for any symmetric matrix ξ

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 4 / 33

Shape optimization problem

Compliance

J(O) =∫O

f · u dx +∫

ΓN

g · u ds

Least square error compared to target displacement

J(O) =(∫O|u− u0|2 dx

) 12

Shape optimization problem

minO∈Oad

J(O) + lV(O) with l ∈ R, l > 0

Oad = {O ⊂ D : ∂O Lipschitz-continuous }

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 5 / 33

Outline

1 Introduction

2 Two-Stage Stochastic ProgrammingTwo-Stage Stochastic Linear Programming FormulationRandom Shape Optimization Problem

3 Level set methodShape gradientLevel set method

4 Numerical ResultsTest SettingExamples

5 ExtensionTopological Derivative

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 6 / 33

Two-Stage Stochastic Linear Program

min{cTx + qTy : Tx + Wy = z(ω), y ∈ Y, x ∈ X}

Information Constraintdecide x −→ observe z(ω) −→ decide y = y(x, z(ω))

minx{cTx + min

y{qTy : Wy = z(ω)− Tx, y ∈ Y} : x ∈ X}

minx{cTx + G(x, ω) : x ∈ X}

−→ looking for a minimal member in family of random variables

{cTx + G(x, ω) : x ∈ X}

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 7 / 33

Outline

1 Introduction

2 Two-Stage Stochastic ProgrammingTwo-Stage Stochastic Linear Programming FormulationRandom Shape Optimization Problem

3 Level set methodShape gradientLevel set method

4 Numerical ResultsTest SettingExamples

5 ExtensionTopological Derivative

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 8 / 33

General Objective Function

J(O, u(O, ω)) =∫O

j(u) dx +∫∂O

k(u) ds + `

∫O

dx, O ∈ Uad, ` > 0

u = u(O, ω) is the solution of the PDEassume j(.) and k(.) are linear or quadratic and independent of ω

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 9 / 33

The two Stages

We now introduce random forces f (ω) and g(ω) to the shape optimization problem.First stage Non-anticipative decision on O has to be takenobserve the random forces f (ω) and g(ω) by choosing a scenarioSecond Stage The variational formulation of elasticity, given O and ω, takes therole of the second-stage problem

Information constraint heredecide O −→ observe f (ω), g(ω) −→ decide u = u(O, ω)

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 10 / 33

Variational two stage formulation

variational description of linearized elasticity:

E(O, u, ω) :=12

A(O, u, u)− l(O, u, ω) with

A(O, ψ, ϑ) :=∫O

Aijkleij(ψ)ekl(ϑ)dx

l(O, ϑ, ω) :=∫O

fi(ω)ϑidx +∫∂O

gi(ω)ϑi dHd−1

Two stage shape optimization problem

minO∈Oad

{J(O, ω) : u(O, ω) = argminu E(O, u, ω)}

Oad = {O ⊂ D : ∂O Lipschitz-continuous}

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 11 / 33

Direct comparison with the linear case

shape optimization : min{J(O, ω) : u(O, ω) = argminu E(O, u, ω)}

linear program : min{j(x, ω) = cTx + min{qTy : Wy = z(ω)− T(x)}}

correspondences:O ↔ xu(O, ω) ↔ yj(x, ω) ↔ J(O, ω)

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 12 / 33

optimization task

min{QE(O) := Eω(J(O, ω)) : O ∈ Oad}

load configuration:assume that ω follows a discrete distribution with scenarios ωσ and probabilities πσwith

∑Sσ=1 πσ = 1 and ’basis’ loads (f k, gm) spanning the load space:

f (ω) =K∑

k=1

αk f k , g(ω) =M∑

m=1

βm f m

by linearity :

u(O, ω) =K∑

k=1

αk ukf +

M∑m=1

βmumg

solves A(O, u(O, ωσ), ϕ) = l(O, ϕ, ωσ)

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 13 / 33

Derivative of the stochcastic functional

Given u(O, ωσ) we rewrite the stochastic program

min{

QE(O) = `

∫O

dx +S∑

σ=1

πσ

∫O

j(u) dx +∫∂O

k(u) ds : O ∈ Oad

}we obtain the shape derivative

Q′E(O)(V) =S∑

σ=1

πσ J′(O, ωσ)(V)

The approach is computationally efficient if K + M � S .

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 14 / 33

Outline

1 Introduction

2 Two-Stage Stochastic ProgrammingTwo-Stage Stochastic Linear Programming FormulationRandom Shape Optimization Problem

3 Level set methodShape gradientLevel set method

4 Numerical ResultsTest SettingExamples

5 ExtensionTopological Derivative

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 15 / 33

Shape gradientWe consider variations Ot = (Id + t · V)(O) , t > 0 of a smooth elastic domain Ofor a smooth vector field V defined on the working domain D.The shape derivative of J(O) at O in direction V is defined as the Fréchet derivativeof the mapping t→ J(Ot), i.e.

J(Ot) = J(O) +⟨∂J∂O

,V⟩

+ o(‖V‖)

O

Ot

Ot = (Id + t V) (O)

cf. [Sokolowski, Zolesio ’92], [Delfour, Zolesio ’01]

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 16 / 33

Shape gradient

As a classical result of the shape sensitivity analysis the shape derivative takes theform

<∂J∂O

,V > =∫ΓN

(2[∂(g · u)∂n

+ hg · u + f · u]− Aε(u) : ε(u)

)V ·~n dν

+∫ΓD

(Aε(u) : ε(u)) V ·~n dν

Here h denotes the mean curvature of ∂O and ~n the outer normal.

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 17 / 33

Shape gradient in level set formulation

When the domain O is implicitly deformed by varying the level set function φ

φt = φ + tψ

the level set equation

∂tφ+ |∇φ| v · n = 0 n =∇φ|∇φ|

allows to define

<∂J∂φ, ψ >:=<

∂J∂O

,−ψ · ~n‖∇ φ‖

>

cf. [Osher, Sethian ’88],[Burger, Osher ’04]

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 18 / 33

Shape gradient in level set formulation

We take into account a regularized gradient descent, based on the metric

G(θ, ζ) =∫

Dθζ +

σ2

2∇θ · ∇ζ dx

which is related to a Gaussian filter with width σ.The shape gradient is the solution of equation

G(gradφJ, θ) = <∂J∂O

, θ > ∀θ ∈ H1,20 (D)

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 19 / 33

Outline

1 Introduction

2 Two-Stage Stochastic ProgrammingTwo-Stage Stochastic Linear Programming FormulationRandom Shape Optimization Problem

3 Level set methodShape gradientLevel set method

4 Numerical ResultsTest SettingExamples

5 ExtensionTopological Derivative

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 20 / 33

Optimization algorithm

time continuous regularized gradient descent:

∂φ(t) = −gradφJ(φ)

with time discrete relaxation :

G(φk+1 − φk, θ) = −τ <∂J∂O

, θ > ∀θ ∈ H1,20 (D)

additional ingrediens of the algorithm :multigrid method for the primal and the dual problem (d = 3)preconditioned CG (d = 2)cascadic optimization (from coarse to fine grid resolution)morphological smoothing when switching the grid resolution(σ = 2.5h or 4.5h)

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 21 / 33

Outline

1 Introduction

2 Two-Stage Stochastic ProgrammingTwo-Stage Stochastic Linear Programming FormulationRandom Shape Optimization Problem

3 Level set methodShape gradientLevel set method

4 Numerical ResultsTest SettingExamples

5 ExtensionTopological Derivative

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 22 / 33

Test Setting

∂O is divided into 3 parts:ΓD: the fixed Dirichlet boundaryΓN : part of the Neumann boundary where the surface loads act on;this is also fixed and does not move during the optimization processΓ0: all other parts of the boundary; this is the only part of ∂O to be optimized

The objective function (compliance with f ≡ 0):

J(O, ω) =∫

ΓN

g(ω) · u ds + `Ri(O)

with regularization terms

R1(O) =∫∂O

ds (and volume preservation) ,

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 23 / 33

Outline

1 Introduction

2 Two-Stage Stochastic ProgrammingTwo-Stage Stochastic Linear Programming FormulationRandom Shape Optimization Problem

3 Level set methodShape gradientLevel set method

4 Numerical ResultsTest SettingExamples

5 ExtensionTopological Derivative

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 24 / 33

2-Stage vs. Expected Load

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 25 / 33

Initial Shape and Objective Values

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 26 / 33

Instance with 20 Scenarios

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 27 / 33

Instance with 21 Scenarios

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 28 / 33

Cantilever

optimal cantilever construction with varying number of scenarios

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45

Iterations

"Compliance""Volume"

"ObjectiveValues"

van Mises stress distribution for different scenarios

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 29 / 33

Outline

1 Introduction

2 Two-Stage Stochastic ProgrammingTwo-Stage Stochastic Linear Programming FormulationRandom Shape Optimization Problem

3 Level set methodShape gradientLevel set method

4 Numerical ResultsTest SettingExamples

5 ExtensionTopological Derivative

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 30 / 33

Different initial shapes yield different solutions

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 31 / 33

Topological Derivative

T (x) = limρ↓0

J(O \ Bρ(x))− J(O)|Bρ(x)|

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 32 / 33

Thank you !

Martin Pach (University Duisburg-Essen) Multi scale shape optimization under uncertainty SPP1253 Workshop Hamburg 2008 33 / 33