NASAK)NASAK) US ARMY AVIATION Langley Research Center SYSTEMS COMMAND Hampton. virgin a ?hb 2...

Post on 17-Jan-2020

2 views 0 download

transcript

AD-A242 458 1

NASA Technical Memorandum I.oI- 0199

AVSCOMTechnical Memorandum 89-B -002

INFLOW MEASUREMENTS MADE WITH- A LASER VELOCIMEITR ON A IIELICOIPTER

MODEL IN FORWARD FLIGH-T

Volume VII: RECTANGULAR PLANFORM BLAD)ES AT AN ADVANCI RAIO OF10.40(A(

Danny R. -load, Susan L. Althoff, and Joe W. Elliott DT ICAerostructures Directorate -F; _-CI---

USAARTA - AVSCOM NVI 19

Langley Research CenterHampton, Virginia

Richard H. SauceyPlanning Research CorporationAerospace Technologies DivisionHampton, Virginia

Th dcs. :Ta'?':

April 1989 fpbi

91- 14724

NASAK)US ARMYAVIATION

Langley Research Center SYSTEMS COMMAND

Hampton. virgin a ?hb 2 .AVIATION FIAT ACTIVITY

SUMMARY

An experimental investigation was conducted in the 14- by 22-Foot Subsonic Tunnelat the NASA Langley Research Center to measure the inflow into a scale model helicopterrotor in forward flight (jt = 0.40). The measurements were made with a two-componentLaser Velocimeter (LV) one chord above the plane formed by the path of the rotor tips (tip-path-plane). A conditional sampling technique was used to determine the position of therotor at the time that each velocity measurement was made so that the azimuthalfluctuations in velocity could be determined. Measurements were made at a total of 178separate locations in order to clearly define the inflow character. The mean and standarddeviation of the induced inflow velocities and the azimuthally dependent induced inflowvelocities are included on a 5.25 flexible disk in the pocket on the inside of the rear cover ofthis report. These data are presented herein without analysis.

INTRODUCTION

One of the problems confronting the helicopter industry is the lack of detailedinformation about the velocity fluctuations around and through rotating blades. Thisinformation is needed for two reasons: to ensure a more complete understanding of theflow field environment associated with a thrusting rotor and to provide data for thevalidation of rapidly emerging computational codes. One explanation for the lack ofavailable data is the absence, until recent years, of a suitable device for making suchmeasurements. Making measurements of the velocity around a system of rotating bladesrequires an accurate, nonintrusive measurement capability that presents a minimum riskto the systems involved. The LV, which uses high energy light beams to measure velocities,is ideally suited to this task.

The LV has been successfully used to measure specific areas and localized phenomenawithin the rotor disk (references I through 3). In addition, the hotwire anemometer andpressure probe, both having directional measuring limitations, have been used in similarprograms (references 4 and 5). This comprehensive program has been conducted tomeasure the flow into a representative rotor system as a function of azimuth using a two-component (stream-wise and vertical direction) LV system.

1 ,

______________________________________L

NOTATION

A rotor disc area, (n R2 ), ft2

Ao Constant term in Fourier series of blade feathering (collective) at r/R = 0.75, deg

A1 Coefficient of cosine term in Fourier series of blade feathering, deg

b Number of blades

B1 Coefficient of sine term in Fourier series of blade feathering, deg

CQ Rotor torque coefficient, Q/(pA(12R)Vtip2), nondimensional

CD Rotor drag coefficient, D/(pA Vtip2), nondimensional

CT Rotor thrust coefficient, T/(pA Vtip2), nondimensional

D Rotor drag, lbf (positive to the rear)

q Dynamic pressure, lb/ft2

Q Rotor torque, in-lbf

r Local radius of the rotor system, ft

R Rotor radius, ft

T Thrust produced by the rotor, lbf

U. Tunnel freestream velocity, ft/sec, (positive downstream)

U Freestream component of velocity, ft/sec. (positive downstream)

u i Induced component of velocity parallel to the tip path plane (positive

downstream), ft/sec

V Vertical component of velocity, ft/sec, (positive up)

Vi Induced component of velocity normal to the tip path plane. ft/scc (positive up)

Vtip Rotor blade hover-tip velocity, ft/sec, (OR)

2a

GREEK

(X Angle between rotor disk and freestream velocity (positive nose up), deg

X Inflow Ratio normal to tip path plane (positive up), (Uasin a +vi)/Vti p

xi Induced Inflow Ratio normal to tip path plane (postive up), vi/Vti p

p Rotor advance ratio, U. cos cA/Vti p

I9 Inflow Ratio parallel to tip path plane (positive downstream), (U.cos a +ui)/Vti p

9i Induced Inflow Ratio parallel to tip path plane (positive downstream), ui/Vtip

0 Rotor rotational speed, radians/sec

W Rotor azimuth measured from downstream position, positive counterclockwise,

as viewed from above, deg

p Air density, slug/ft 3

0 Blade pitch angle at a specific azimuth (positive nose up), deg,

O=A o -A 1 cosW-BI sin W

xx Mean value

3

EXPERIMENTAL APPARATUS

The experimental apparatus used in this investigation included the NASA LangleyResearch Center 14- by 22-Foot Subsonic Tunnel, the 2-Meter Rotor Test System (2MRTS),and a two-component Laser Velocimeter system.

The 14- by 22-Foot Subsonic Tunnel is an atmospheric, closed-circuit wind tunnel ofconventional design with enhancements for the testing of powered and high-liftconfigurations (reference 6). The tunnel is shown in figure 1. When the tunnel isoperated in the open configuration, the walls and ceiling of the test section are lifted out ofthe flow leaving only a solid floor and a flow collector. In this configuration, the tunnelcan be driven to about 170 knots. This investigation was conducted with the tunnel in theopen configuration to allow complete optical access to the rotor flow field.

The 2MRTS is a general purpose rotorcraft model testing system which was mountedon a strut in the forward part of the test section (see figure 2). The system consists of a 29-horsepower electric drive motor and 900 speed-reducing transmission, a blade pitch remotecontrol system, and two six-component strain gage balances used for measuring forces andmoments on the rotor system and the generic fuselage shell (ROBIN). The four-bladed rotorhub is fully articulated with viscous dampers for lead-lag motion and coincident flap andlag hinges. A more detailed description of the 2MRTS and the ROBIN fuselage can be foundin reference 7. The characteristics of the rotor blades used during this investigation can befound in table 1. No attempt was made to dynamically scale the rotor blades; rather, theywere very rigid to minimize blade aeroelastic response uncertainties.

The LV system used in this investigation was designed to measure the instantaneouscomponents of velocity in the longitudinal (freestream) and vertical directions and isdescribed in reference 8. The system is comprised of four subsystems: optics, traverse, dataacquisition, and seeding. The optics subsystem, which is shown in figure 3, operates inbackscatter mode and at high power (4 watts in all lines) in order to accommodate the longfocal lengths needed to scan the wide test section. The transmitting and receiving opticspackages are augmented by a zoom lens system consisting of a 3-inch clear aperturenegative lens and a 12-inch clear aperture positive lens Bragg cells in each of the opticalpaths provide a directional measurement capability. The velocity measurements are madeat a point in space where the four beams cross, called the sample volume. The length of thesample volume (transverse to the flow direction) increases as the sample volume is movedaway from the optics assembly. The sample volume length, over the 10- to 20-foot focallength of the system, is less than 1 cm and has a nearly constant diameter of 0.2 m:i-

The traverse subsystem provides five degrees of freedom in positioning '*e samplevolume and is controlled by the same computer that is used for data acquisit:. Translationof the sample volume in the horizontal and vertical direction is accomplis'.cd by displacingthe entire optics platform. Translation along the lateral axis is accomplished by displacingthe negative lens located in the zoom lens assembly, thus refocusing the sample volumealong the axis of optical transmission. The other two degrees of freedom, pan and tilt, arcimplemented by rotating the final mirror about its vertical and horzontal axes in order tochange the direction of optical transmission. The total range of woe traversing system is 7feet vertically, 6 feet streamwise, 16.5 feet laterally, and 10' in ,oth pan and tilt.Measurements can be made outside of this envelope by re-po-itioning the optics platform,which is mounted on wheels to facilitate such relocations. For this study the traversingsystem was positioned to the left of the test section when looking downstream as shown infigure 2.

.1

The data acquisition subsystem is shown schematically in figure 4 and interfaceswith the optical signal processing equipment to receive two channels of raw LV data and upto five channels of auxiliary data. In this investigation, two auxiliary channels were usedfor the acquisition of data relative to blade position (one each for the U and V components).The system converts the raw ILV data to engine,-ring units and determines the statisticalcharacterstics of the acquired data so that tht, test results can be evaluated during theacquisition process. The raw data and u- to 64 parameters from the tunnel static dataacquisition system are written to magnetic tape for later analysis. The final functionperformed by the data system is to control the five dcgrec-of-frcedom scan system.

The seeding subsvsiem, shown schematically in figure 5 and in the photo in figure 6.is a solid particle, liquid dispensing system (reference 9). Polystyrene latex microspheresare suspended in a mixture containing, by volume, 50 percent water and 50 percent ethylalcohol. The advantages of the polystyrene particles are their low density, highreflectivity, and precise particle size. The particles used in this investigation were 1.7microns in diameter with a standard deviation of 0.0239 microns. The particle mixture ispumped to an array of nozzles where compressed air is used to atomize the mixture. Thesenozzles arc mounted on a frame that can be moved about the settling chamber of the tunnelusilg the remote positioning system recently installed (figure 6). The low vapor pressureof water/alcohol mixture allows it to evaporate as it travels the 85 feet from the settlingchamber to the test section. This process provides isolated single particles in the flow fieldwhose velocities are measured as they pass through the sample volume. The local fluidvelocity is inferred from the seed particle velocity.

ERROR ANALYSIS

The overall LV system error is obtained by summing the error of all of thecomponents that contribute to an error in the velocity measurement. The error sources aresummarized in the table below and are defined in references 10 and 11. The resulting totalbias error of -0.806 to 1.820 percent is obtained by adding the percents contributed by eacherror source. The total random error of 1.120 percent is obtained by taking the square rootof the sum of the squared percents of the random sources. Taking the square root of thesum of the squares of the random and bias errors gives a total system error of 1.38 percentto 2.14 percent.

5

Error Source Bias Error Random Error

Cross Beam Angle Measurement ±0.813 N/A

Diverging Fringes A A

Time Jitter N/A N/A

Clock Synchronization 0.507 ±0.507

Quantization A ±.999

Velocity Bias B B

Bragg Bias B B

Velocity Gradient B B

Particle Lag ±0.50 B

Total Error -0.806 to 1.820 1.120

A Not Measured

B Negligible

N/A Not Applicable

6

TEST PROCEDURES

In all cases measurements were made at azimuthal increments of 300 from=0, at 3.0 inches (approximately I chord) above the plane formed by the tips of the blades.

Measurements were made from a radial location of r/R = 0.2 to r/R = 1.10, with the majorityof the measurement locations concentrated toward the outboard portion of the disk. Figure7 shows the measurement locations superimposed on the rotor disk. During the test, therotor tip path plane angle-of attack was set at -6.8' relative to the freestream by zeroing theblade flapping relative to the shaft and setting the shaft angle to -6.8'. The operatinghover-tip speed for the test was held at 624 ft/sec (2113 rpm), the nominal tunnel speed was250 ft/sec (ji.= 0.40), and the nominal rotor thrust coefficient was 0.0064. Table 2 lists thenominal test conditions and selected parameters. The LV data acquisition process consistedof placing the sample volume at the measurement location and acquiring data for a periodof 1 minute or until 4096 velocity measurements were made in either the longitudinal or thevertical component. During this process, conditional sampling techniques were used topermanently associate each measured velocity with the location of the rotor blades at thetime when the measurement was made. At the conclusion of the process, the measurementlocation was changed and the acquisition process was repeated.

DATA REDUCTION

Independent velocity measurements in the freestream and vertical direction weremade at each measurement location. At the same instant in time that a velocitymeasurement was made, the location of the blades was recorded for that velocity componen,.The maximum time required to acquire this data was 1 minute (2113 rotor revolutions forthis test) and the minimum was approximately 10 seconds. These data, collected over manyrevolutions, were sorted into 128 equally spaced azimuth segments (2.810 wide) that arerepresentive of blade position. Careful measurements indicated that the lead-lag motionwas well within this azimuth resolution (2.810); therefore, no corrections to blade positionwere made due to lead-lag. The velocity value assigned to each interval at a measurementlocation is the arithmetic mean of all the measurements that were taken in the respective2.811 wide azimuthal range. The results of this sorting process provide the azimuthallydependent velocity data. The "mean velocity" value refers to the velocity calculated fromthe arithmetic mean of all the measurements made at a single measurement location.

EXPERIMENTAL RESULTS

Table 3 lists the measurement locations, the mean and standard deviation of the twocomponents of induced inflow ratio, and the number of measurements in each of themeasured components (U and V). In figure 8 the mean longitudinal induced component ofinflow ratio, ti , with a band of ± one standard deviation is plotted vs. blade radius for eachradial scan. The standard deviation represents the fluctuation in velocity at a givenmeasurement location. It is not an indication of the error in the mean measurements. Thesize of the symbols used for plotting the mean velocity values is an approximation of thecalculated error in the measurements. Figure 9 presents in the same format the meannormal induced component of inflow ratio, Xi. The same data without the ± one standarddeviation is presented in a contour plot format in figures 10 and 11 in order to show moreclearly the interactions over the whole disk (viewed from above). Azimuth dependent dataare presented in figures 12-189. The format for these include the induced inflow ratio vsazimuth at the top of the figure, the number of measurements that were used indetermining the inflow ratio value for each azimuth segment in the center, and a

7

conditionally sampled amplitude spectrum (order ratio analysis) of the azimuthal variationat the bottom of the figure. The figure numbers for the azimuthal and radial measurementlocations are indicated:

r/R .20 1.40 .50 .60 .70 .74 .78 .82 .86 .90 .94 .98 1.02 1.04 1.10

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

30 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

60 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

90 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

120 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

150 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

180 102 103 104 105 106 107 108 109 110 111 112 113 114

210 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

240 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

270 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

300 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

330 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

The mean and standard deviation of the induced inflow ratios (table 3) and theazimuthally dependent induced inflow ratios (figures 12 through 189) are included on a 5.25flexible disk in the pocket on the inside of the rear cover of this report. The details of thedata format and the file structure are located in the file "README.DOC". The disk format is360 byte double-sided, written using the Microsoft Corporation MS-DOS operating system.

CONCLUDING REMARKS

The Laser Velocimeter provides an effective system for making measurements in thedynamic environment associated with rotor blades. It has been used on numerous occasionsto measure the localized flow phenomena encountered in such flows. This investigationdemonstrates the use of a matured LV system to map the flow into a representative rotor inforward flight by making velocity measurements at 178 locations above the rotor disk.These measurements provide both the mean and azimuthally dependent velocity values, andthey provide a detailed look at the nature of this flow. The mean and standard deviation ofthe induced inflow velocities and the azimuthally dependent induced inflow velocities areincluded on a 5.25 flexible disk in the pocket on the inside of the rear cover of this report.

munn ,nnnam nnnn nm agunnmumnnmnn umun nnumlmln |ll 8

REFERENCES

1. Landgrebe, A. J.; and Johnson, B. V.: Measurement of Model Helicopter Rotor FlowVelocities with a Laser Doppler Velocimeter. American Helicopter Society Journal,Vol 19, July 1974, p. 39-43.

2. Biggers, J. C.; and Orloff, K. L.: Laser Velocimeter Measurements of the HelicopterRotor-Induced Flowfield. American Helicopter Society, Annual National V/STOLForum, 30th, Washington, D.C. May 7-9, 1974.

3. Owen F. K.; and Taubert M. E.: Measurement and Prediction of Model-RotorFlowfields. AIAA, 18th Fluid Dynamics, Plasmadynamics and Laser Conference,Cincinnati, Ohio, July 16-18, 1985.

4. Tangler, J. L.; Wohlfeld, R. M.; and Miley, S. J.: An Experimental Investigation ofVortex Stability, Tip Shapes, Compressibility and Noise for Hovering Models. NASACR-2305, September 1973.

5. Junker, B.: Investigations of Blade-vortices in the Rotor Downwash. TwelfthEuropean Rotorcraft Forum, Garmish-Partenkirchen, Federal Republic ofGermany, September 22-25, 1986.

6. Applin, Z. T.: Flow Improvements in the Circuit of the Langley 4- by 7-MeterTunnel. NASA TM 85662, December 1983.

7. Phelps, A. E. III; and Berry, J. D.: Description of the U.S. Army 2-Meter Rotor TestSystem. NASA TM 87762, AVSCOM TM 86-B-4, January 1987.

8. Sellers, W. L.; and Elliott, J. W.: Applications of a Laser Velocimeter in the Langley4- by 7-Meter Tunnel. Proceedings of the Workshop on Flow Visualization andLaser Velocimetry for Wind Tunnels, NASA CP 2243, March 1982, pp. 283-293.

9. Elliott, J. W.; and Nichols, C. E.: Seeding Systems for Use with a Laser Velocimeter inLarge Scaie Wind Tunne!s. Proceedings of the Workshop on Wind Tunnel SeedingSystems for Laser VdIocimeters, NASA CP 2393, March 1985, pp. 93-103.

10. Young, W. H.; Meyers, J. F.; and Hepner, T. E.: Laser Velocimeter SystemsAnalysis to a Flow Survey above a Stalled Wing. NASA TN D-8408, August 1977.

11. Dring, R. P.: Sizing Criteria for Laser Anemometry Particles. Journal of FluidsEngineering, Vol. 104, March 1982, p. 15-17.

9

TABLE 1 - 2MRTS ROTOR AND BLADE CHARACTERSTICS

HUB TYPE FULLY ARTICULATED

Number of blades 4Airfoil section NACA 0012Hinge offset, in, r/R 2.00, .06Root cutout, in, r/R 8.25, .24Pitch-flap coupling angle, deg 0.0Twist linear, deg -8.0Radius, R, in 33.88Airfoil chord, C, in 2.6Rotor solidity, bc/iR 0.0977Blade stiffness

Flapwise lb-in 2 11500Torsional lb-in 2 25500

Blade weight, grams 259.3Lead/lag damping in-lb/deg/sec 182.4

10

TABLE 2- NOMINAL ROTOR CONTROL AND PERFORMANCE PARAMETERS

CT- 0.0064

CQ 0.00063

CD 0.00

a, deg -6.80

Coning, deg 1.8

Ao, deg 9.4

A1, deg -0.5

B 1, deg 8.2

-b. 0.40

U,,, ft/sec 250.5

Vtip, ft/sec 624.0

Lag angle (mean), degrees 1.4

11

TABLE 3 INFLOW VELOCITY SUMMARY

S r/R Mean Standard # of Mean Standard # ofdeviation Measurements deviation Measurements

0 0.20 0.0143 0.0158 2144 -0.0008 0.0213 32530 0.40 0.0088 0.0130 1884 -0.0221 0.0138 33750 0.50 0.0039 0.0130 2155 -0.0241 0.0117 32130 0.60 0.0036 0.0127 2204 -0.0257 0.0101 31070 0.70 0.0007 0.0132 2198 -0.0267 0.0105 28070 0.74 0.0015 0.0134 2172 -0.0269 0.0105 30180 0.78 -0.0010 0.0124 2176 -0.0284 0.0116 28850 0.82 0.0001 0.0126 2079 -0.0292 0.0115 30800 0.86 -0.0016 0.0120 2099 -0.0287 0.0110 30310 0.90 -0.0021 0.0119 2120 -0.0302 0.0112 30310 0.94 -0.0040 0.0118 2062 -0.0308 0.0109 31110 0.98 -0.0074 0.0113 1900 -0.0310 0.0107 31520 1.02 -0.0093 0.0128 1910 -0.0317 0.0101 31970 1.04 -0.0104 0.0128 1984 -0.0321 0.0098 32320 1.10 -0.0122 0.0130 2066 -0.0309 0.0092 325830 0.20 0.0116 0.0145 1779 -0.0004 0.0128 361130 0.40 0.0051 0.0119 968 -0.0110 0.0095 193530 0.50 0.0060 0.0118 1702 -0.0193 0.0100 291830 0.60 0.0059 0,0119 1138 -0.0219 0.0104 277430 0.70 0.0042 0.0121 1288 -0.0237 0.0089 311230 0.74 0.0031 0,0117 1373 -0.0249 0.0088 319630 0.78 0.0057 0.0115 1392 -0.0270 0.0091 337130 0.82 0.0048 0.0110 1543 -0.0247 0.0082 277030 0.86 0.0006 0.0109 989 -0.0254 0.0093 171730 0.90 0.0017 0,0108 2025 -0.0244 0.0077 327130 0.94 -0.0012 0.0105 1975 -0.0242 0.0076 314130 0.98 -0.0032 0.0103 1689 -0.0250 0.0075 285630 1.02 -0.0028 0.0108 1569 -0.0242 0.0069 330330 1.04 -00030 0 0106 1472 -0.0236 0.006730 1.10 -0.0078 0.0116 1794 -0.0207 0.0063 335660 0.20 0.0070 0.0133 1561 0.0019 0.0081 36746 .0 0.0081 0.0134 12-14

0.40 04 -0.0179 0.0080 372160 0.50 0.0098 0.0116 1592 -0.0191 0.0084 313660 0.60 0.0055 0.0117 1908 -0.0145 0.008, 248360 0.70 0.0055 0.0119 1816 -0.0120 0.0080 335060 0.74 0.0059 0.0117 2002 -0.0093 0.0073 318160 0.78 0.0022 0.0115 1915 -0.0065 0.0072 315560 0.82 0.0018 0.0115 1879 -0.0059 0.0068 325360 0.86 0.0003 0.0117 1534 -0.0057 0.0069 337560 0.90 -0.0001 0.0119 1645 -0.0031 0.0064 332660 0.94 0.0009 0.0114 1375 -0.0008 0.0058 334260 0.98 -0.0026 0.0112 1610 0.0019 0.0055 351060 1.02 -0.0034 0.0113 1621 0.0058 0.0045 351560 1.04 -0.0033 0.0121 1527 0.007,8 0.0041 460 1.10 -0.0039 0.0118 1622 0.()112 0.0038 3411

12

TABLE 3 - CONTINUED

w r/R Mean Standard # of Mean Standard # ofdeviation Measurements deviation Measurements

90 0.20 -0.0030 0.0134 1339 0.0046 0.0055 129790 0.40 0.0108 0.0129 2171 -0.0125 0.0078 358390 0.50 0.0071 0.0131 2936 -0.0102 0.0082 336990 0.60 0.0063 0.0143 2850 -0.0046 0.0082 245190 9.70 0.0026 0.0134 2898 0.0001 0.0084 288590 0.74 0.0014 0.0132 2890 0.0010 0.0089 376290 0.78 0.0012 0.0133 3060 0.0039 0.0084 336090 0.82 0.0007 0.0132 3066 0.0060 0.0085 378190 0.86 -0.0008 0.0128 2686 0.0080 0.008 1 386890 0.90 -0.0068 0.0139 2475 0.0097 0.0043 337490 0.94 -0.0060 0.0144 2531 0.0103 0.0044 341590 0.98 -0.0061 0.0140 2368 0.0098 0.0044 343090 1.02 -0.0041 0.0137 1737 0.0085 0.0042 346690 1.04 -0.0045 0.0136 2075 0.0077 0.0042 343490 1.10 -0.0063 0.0132 2073 0.0061 0.0036 3537120 0.20 -0.0062 0.0110 1820 0.0094 0.0087 3071120 0.40 0.0051 0.0126 2060 -0.0052 0.0094 3103120 0.50 0.0039 0.0119 2283 -0.0022 0.0077 2824120 0.60 0.0035 0.0120 2553 0.0001 0.0076 3389120 0.70 -0.0003 0.0115 2011 0.0030 0.0071 2353120 0.74 -0.0033 0.0114 1711 0.0037 0.0066 2012120 0.78 -0.0063 0.0116 1869 0.0057 0.0060 2641120 0.82 -0.0046 0.0109 2834 0.0066 0.0061 2767120 0.86 -0.0101 0.0108 1507 0.0060 0.0059 1535120 0.90 -0.0093 0.0107 2174 0.0063 0.0057 2715120 0.94 -0.0104 0.0102 2234 0.0060 0.0055 2539120 0.98 -0.0110 0.0105 2351 0.0055 0.0054 2742120 1.02 -0.0085 0.0108 2436 0.0038 0.0050 3026120 1.04 -0.0125 0.0107 2519 0.0033 0.0050 3058120 1.10 -0.0108 0.0108 2737 0.0026 0.0049 3043150 0.20 -0.0145 0.0100 2287 0.0119 0.0084 3192150 0.40 -0.0056 0.0097 2510 0.0017 0.0076 1247150 0.50 -0.0068 0.0103 2394 0.0020 0.0085 3362150 0.60 -0.0042 0.0097 2007 0.0027 0.0102 3520150 0.70 -0.0048 0.0098 2320 0.0042 0.0100 3339150 0.74 -0.0056 0.0107 2768 0.0044 0.0107 3482150 0.78 -0.0071 0.01 10 2196 0.0044 0.0107 3352150 0.82 -0.0060 0.0110 2515 0.0048 0.0091 3189150 0.86 -0.0074 0.0114 2749 0.0047 0.0087 2501150 0.90 -0.0084 0.0112 2772 0.0044 0.0079 2620150 0.94 -0.0086 0.0116 2777 0.0047 0.0069 2764150 0.98 -0.0100 0.0112 2703 0.0044 0.0063 2996150 1.02 -0.0100 0.0115 2758 0.0038 0.0059 2814150 1.04 -0.0108 0.0113 2765 0.0038 0.0057 2937150 1. 10 -0.0122 0.0113 2758 0.0026 0.0055 2770

13

TABLE 3 - CONTINUED

wV r/R Mean Standard # of Mean Standard # ofdeviation Measurements deviation Measurements

180 0.20 -0.0158 0.0095 2373 0.0144 0.0075 3267180 0.40 -0.0125 0.0104 2492 0.0093 0.0082 3278180 0.50 -0.0125 0.0108 2767 0.0093) 0.0104 28,4180 0.60 -0.0134 0.0107 2753 0.0094 0.0114 2819180 0.70 -0.0154 0.0105 2752 0.0094 0.0105 2908180 0.74 -0.0160 0.0104 2083 0.009-4 0.0112 3084180 0.78 -0.0157 0.0105 2191 0.0088 0.0104 3100180 0.82 -0.0169 0.0108 2440 0.0092 0.0095 3032180 0.86 -0.0170 0.0105 2708 0.0082 0.0089 3055180 0.90 -0.0172 0.0105 2585 0.0082 0.0079 3011180 0.94 -0.0180 0.0100 2304 0.0086 0.0079 3122180 0.98 -0.0197 0.0101 2016 0.0083 0.0077 3187180 1.02 -0.0200 0.0097 1836 0.0082 0.0069 3204210 0.20 -0.0173 0.0105 2573 0.0185 0.0069 3613210 0.40 -0.0095 0.0125 2852 0.0066 0.0106 3603210 0.50 -0.0087 0.0130 2916 0.0049 0.0124 3585210 0.60 -0.0097 0.0125 2344 0.0020 0.0077 2204210 0.70 -0.0115 0.0128 2388 0.0020 0.0079 2352210 0.74 -0.0085 0.0119 2455 0.0024 0.0080 2541210 0.78 -0.0097 0.0118 2531 0.0029 0.0078 2599210 0.82 -0.0110 0.0112 2333 0.0037 0.0086 2899210 0.86 -0.0078 0.0113 2544 0.0025 0.0074 2656210 0.90 -0.0089 0.0111 2582 0.0025 0.0069 2697210 0.94 -0.0117 0.01M7 2586 0.0035 0.0070210 0.98 -0.0 11 0.0105 2662 0.0028 0.00-1 25210 1 .02 -0.0145 0.0 00 2675 0.0030 0.07210 1.04 -0.0122 0.(097 2-177 0.003) 0.00 65 .007210 1. 10 -0.0142 0.0093 2071 0.0)()_ 0, 2-(1 0.20 -0.0097 0.0-11 7040 0.0156 0.0070 7240 0.40 -0.0075 0.0 32 934 0.002S 0.0105 297240 0.50 -0. 0031 0.0127 2 07 0.001 0.0 2240',(1, 0.60 -0( 5 0.) 135 2666 -1.00 3 0.0 1 32;240 0.70 -0.T; .0.33 "34.- -0.01 0 1 3123240 0.74 -0.0057 0.0113 198:- -0.0 2 0.01 15 32522 W0 0.78 -0.008 1 0.0129 2605 -0.000" <1' , .> 20102-10 0.82 -0.0069 0.0125 256, -0.0016 0) 0114240 0.86 -0.00 0. 0 123 27 -0.000t, 0.01 )- .F240 0.90 -0.0053 0.0120 2696 0.0006 0.00(8) 251240 0.94 -0.0060 0.0115 2760 0.0015 0.0073 267240 0.98 -0.0089 0.0115 2722 0.(022 0.0073 297-24(0 1.02 -0.0079 0.0113 192 1 0.0027 0.0070 2591240 1.04 -0.0(194 0.0111 2784 0.0025 0.006" 291240 1 . 10 -0.0068 0.0110 8 8o (0. 1) 0.() 0 2152

TABLE 3 - CONCLUDED

r/R Mean Standard # of Mean Standard # ofdeviation Measurements deviation Measurements

270 0.20 -0.0043 0.0110 2769 0.0117 0.0071 2357270 0.40 -0.0024 0.0116 2688 0.0016 0.0090 3009270 0.50 -0.0021 0.0116 2727 -0.0006 0.0093 3006270 0.60 -0.0028 0.0119 2700 -0.0015 0.0090 2999270 0.70 -0.0048 0.0117 2863 -0.0029 0.0090 2412270 0.74 -0.0032 0.0118 2795 -0.0030 0.0091 2877270 0.78 -0.0040 0.0118 2753 -0.0029 0.0092 3175270 0.82 -0.0023 0.0113 2574 -0.0027 0.0091 3069270 0.86 -0.0016 0.0111 2693 -0.0020 0.0074 2350270 0.90 -0.0024 0.0111 2780 -0.0015 0.0069 2872270 0.94 -0.0024 0.0110 2658 -0.0006 0.0063 3007270 0.98 -0.0032 0.0113 2642 0.0009 0.0058 2912270 1.02 -0.0053 0.0109 2458 0.0027 0.0052 3052270 1.04 -0.0032 0.0119 2454 0.0026 0.0053 3033270 1.10 -0.0030 0.0121 2605 0.0029 0.0055 3098300 0.20 0.0049 0.0124 2655 0.0105 0.0073 2573300 0.40 0.0023 0.0129 2564 0.0043 0.0089 2110300 0.50 0.0009 0.0137 2554 0.0017 0.0084 2123300 0.60 0.0010 0.0131 2481 -0.0024 0.0075 2438300 0.70 -0.0001 0.0123 2515 -0.0035 0.0074 2102300 0.74 -0.0010 0.0124 2531 -0.0050 0.0082 2251300 0.78 -0.0016 0.0115 2556 -0.0066 0.0084 2291300 0.82 -0.0024 0.0119 2579 -0.0072 0.0079 1925300 0.86 0.0017 0.0117 2550 -0.0072 0.0082 2312300 0.90 -0.0005 0.0115 2509 -0.0082 0.0080 1837300 0.94 0.0003 0.0113 2530 -0.0089 0.0091 2561300 0.98 -0.0021 0.0116 2467 -0.0090 0.0089 2327300 1.02 -0.0024 0.0116 2427 -0.0078 0.0089 2300300 1.04 -0.0025 0.0126 2429 -0.0062 0.0080 2334300 1.10 -0.0043 0.0133 2358 -0.0031 0.0075 2291330 0.20 0.0097 0.0132 2694 0.0103 0.0085 2383330 0.40 0.0072 0.0134 2495 0.0011 0.0067 1985330 0.50 0.0085 0.0147 2517 0.0007 0.0075 2084330 0.60 0.0094 0.0158 2485 -0.0019 0.0072 2396330 0.70 0.0096 0.0160 2376 -0.0038 0.0065 2425330 0.74 0.0078 0.0158 2376 -0.0045 0.0072 2385330 0.78 0.0043 0.0145 2606 -0.0041 0.0064 2406330 0.82 0.0040 0.0145 2635 -0.0046 0.0066 2323330 0.86 0.0074 0.0152 1996 -0.0068 0.0089 2425330 0.90 0.0064 0.0146 2100 -0.0082 0.0089 2490330 0.94 0.0032 0.0144 2562 -0.0099 0.0096 2496330 0.98 0.0070 0.0168 2125 -0.0108 0.0111 2466330 1.02 0.0046 0.0155 1763 -0.0114 0.0102 2333330 1.04 0.0037 0.0138 2062 -0.0121 0.0104 237f53301. 10 -0.0 12 0.0144 2084 -0.0120 0.0096 242"

15

ma

Figure 1. Aerial view of 14- by 22- Foot Subsonic Tunnel.

pU

Figure 2. 2 MRTS mounted in forward bay of the test section.

16

SAMPLE VOLUME

ZOOM IFNS 3'STEM

TILT 4 HOLE MIRROR

MRMARRO R R

TAE PR PMKG

Cot OR

Figure 3. Schematic of Laser Velocimeter optics subsystem.

U-OPOE~J OTOR AZI?4JrH COPNTPHOTODETECTOR FICOOER PHOTODETECTORJ

u-C T r v-- CO 1Poi

LSGjA PRCSORSGA PRESO

U-coM ONEN -cow-I r V-C O "-Ec( T V-COPOINEoN

VOCTY AZMT AZMT VELOCITY

LASER VFLTCI INTERFAGE ANDL CONTRCL BLFFER

[, 32 BIT COMPUTER

~4A~~ETC TRMALCS LINE STTCDATA L SA

Figure 4. Schematic of data acquisition and control subsystem.

17

.2>>

COL

0

-'-44

CL 4

U)

00

000 4

18

Figure 6. Photograph of remote control positioner for seeding system.

19

041)o 00 w4

0 w

00

00

00

0

00 000 0 oo

0 011 000000 0 0000000 01

0 0 >1

0 0 0 000

0 0 0 >0)0 0 0 04le

00 00 0 N ~0 0 0Y

0 0 0 0..0 0 0 U0 g0

0 04-00 0 0 0 0HC

000.

0 0 0 0* 000

200

.050) 2 ......... ........ .

00

. ............ 0...... 0 0 0............ 0 00 0

-.025

-. 050 * I I * I *

(a) rotor azimuth = 0 degrees

.050

.025---.... ... ................... ... ..0 0 0 0 0 0 0 0 0 0

.o ............................................... .. ... .000. .........

-.025

.050 * p * p *

(b) rotor azimuth = 30 degrees

.050

.025 .................. ......... . . ............................................................,•

0 0 0 0 ... ..

0 00 0 0 0 o................ . ........... .................. , ... °....... ..... .

........ ............

-.025

-. 050 I I

O. 02 0.4 0.8 0.8 LO 12r/R

(c) rotor azimuth = 60 degrees

Figure 8. Radial distribution of mean induced inflow ratio -

21

.050

D025

S0 0 . ....................................i.. ....0..... ... . . 0

-D025

- 50* I * I * I I

(d) rotor azimuth = 90 degrees

D50

.025

....... .....................0 0 0 • o-t-*....*0

.000 0 0 ... ........

............... ......... ............ 000000 0. 0 . . .

-.025....... •"

- * , I * I * i

(e) rotor azimuth = .20 degrees

.050

.025

0 0...... 0 0 0 00 0

0 ,~.......-................ .... '"........ . ,..... ,..... ...........

-.025 .....

-.05O * I i * I * I *

0.0 0.2 0.4 0.6 0.8 :LO £.2r/R

(f) rotor azimuth = 150 degrees

Figure 8. Continued.

22

.050

.025

i .oo . ... .....D W .......... .... o ,.... °...... . . . . . . . . . . . . . .. * ..........

0 0 0 0 000000000-. 0 5 -... .. .. . . .. .. ... .. .. ... .. .. ... .. .. .... ...... . o. . .

-. 0501 I I I I -I

(g) rotor azimuth = L80 degrees

.050

.025

l.0000 0 0 000000 0 000 0

0 ..................... ............. . ...025 ......-.....

.050 0 0000 0(h) rotor azimuth =2±0 degrees

.050-

.025

............ **"'** .................... .... .......... ... .... . .

li-.000 ........................ 0

S0 0 0 0 0 0000

-.025

-.050 *

0. 0.2 0.4 06 0.8 0 O 2r/R

(1) rotor azimuth = 240 degrees

Figure 8. Continued.

23

.050-

.025

.... •...........•.... .. ,,.. ............. . . ..... . .o,.-.. ........... ... .. ... ..

4i 0 0 0 0 0000000000 0... °................ ..o ., ° *.... . ...... ,° ..... ... ............. .. ... ...

-.025

-. 050 I I * I

(j) rotor azimuth = 270 degrees

.050

.... ,.............................................. °...... .........-......

t .000 0 0 0 o o o o o o o 0 o 0

-.025

-. 050 I , I * I ,

(k) rotor azimuth = 300 degrees

.050

.025 .............................................

- o o 0 000oO o oo. 00

0....................... ..... ." '.°...,. °

-.025

.050 * l * l I , I ,00 02 0.4 0.6 0.8 :LO L2r/R

(1) rotor azimuth = 330 degrees

Figure 8. Concluded.

24

.025

.000 0

0 .. ........ . . . . . . . . . . . . . . . . . . . . . .

-.025 .. 0 0 0 0 0 0 0 0 0 0 0 0 0" . . . . . . . . . . . . . . . . . .

' . .... ... ............... .,.

-.050 I(a) rotor azimuth = 0 degrees

.050

.025

.000 0

............... .................. . .......- .0 2 5 .. .. .. 0 0 0 0 0 0 0 0 0 0 0

".. . ................

-.0 5 0 I , I I ,

(b) rotor azimuth = 30 degrees

.050

.025

- .0 0... . . . . .

00.0 0-........ 0. ........... 0 0 0 0

0 0.. ......0 0

-.025 ................

-.050 ----- I

0.0 02 0.4 0.6 O 10 1.2r/R

(c) rotor azimuth = 60 degrees

Figure 9. Radial distribution of mean induced inflow ratio

25

.050

.025 .....0 0 . ......

io " ... ........... o.... a "- o. 0 0 .Y 0 0

• "~.......................... 00 0 ."..• 0 0 ..- °°''. ..

-.025

-.050' I , I - I ,

(d) rotor azimuth = 90 degrees

.050

.025-

0.. . .. ............................. ........ . ..0.. 0 0 ...... ... ......... .......................

0 .... 0 ... 0

-.025

-.050 * I * I , I *

(e) rotor azimuth = 120 degrees

.050

.025-0 '.... ............. .................... .......... .....

.i 0 0 0 0 0 0 0 0 0 0 0 00 0• ". , . . . ,, . . . . . . .~ ~ ~~.. ... . . . . . . . . . . . .. . . . . . . . .. . . " . . . . . . . . . . . .

-.025

-050 I I I I

0.0 02 0.4 0.6 0.8 J-0 12rIR

(f) rotor azimuth = 150 degrees

Figure 9. Continued.

26

.050-

.0250 ..............

-.005

-.05

(g) rotor azimuth 1 80 degrees

.050-

.025"

0....0...0..................... .........

0 000 00 0 0 0

-.025

-.05 *WI

05-(h) rotor azimuth =210 degrees

.025

.0250 .. ... .................................... .......

-.050 r

0.0 02 0.4 0.6 0.8 1.0 i.2r/R

{rotor azimuth = 240 degrees

Figure 9. Continued.

27

.050-

.025

-0 0000"°000 000o°°

................ .. ......... .......... ............

-.025

-.0 5 0 i I A I ,

(j) rotor azimuth = 270 degrees

.050

.025

. . . . . . . . . . . . . . .. . . . . . . . .. ..............

- 0°°... . .

0 0 ....... ...................................................

.000 0 0 0 00 0f0 0.025................................ ................ °........................

-.025

-.050 I , I , I ,(k) rotor azimuth = 300 degrees

.050

.025

0 ........

...... .......... ... o ..................1.o 0 0000 .......................... .0 0 0 0

. . .... ... ...

.......... ,

-.025

-. 050 I , I , I I ,0.0 02 0.4 0.6 01. :LO12

r/R(1) rotor azimuth = 330 degrees

Figure 9. Concluded.

28

29

E

4 0)

0t I L

041

0

c 0L

C)

C: C

300

0094

c;4 0

49-)

4

0

6 0F-4

49-4

c0

43

C-,

.9.4

31

.03 = 0.014

.02-

11. .01

S .00

-.01

-.02'*

Li W00

z 30

z0

0 90 180 270 360ROTOR POSITION, degrees

-2x10.393-

Cr0 262-W

wE

. .131

0 :16 32 48 64ORDER RATIO

Figure 12.- Induced Inflow velocity measured at0 degrees and r/R of 0.20.

32

.02

a V .01

.00-

-.021I

60-9 8 7 6

4-2

20

.32am

.00

0 16 32 48 644 ORDER RATIO

Figure 12.- Concluded.

33

.02- 0.009

.01

.00-

-.01

-. 02 *

LLW

r

0

0 90 180 270 360ROTOR POSITION, degrees

-2290

2W -

0 .1930.

.097-

.0000 16 32 48 64

ORDER RATIO

Figure 13.- Induced Inf low velocity measured at0 degrees and r/R of 0.40.

34

.02-X -0.022

.0i

* .00

-. 0±1

-. 021I*

1-2

I--2

C. 280-

140

.0000 16 32 48 64

ORDER RATIO

Figure 13.- Concluded.

'35

.02 - 0.004

iZ .01

.00

-.01 p

0 3O 010 7 6

ROORPSIINdgrea-2

ROTO POITONdgre

-J2

0- 16: 32486

.006

42 -0.024

.02 I

.00-

-.Oi

-. 02 *

60 9 8020

-2

I-2

.'222-

.0000 16 3248 64

ORDER RATIO

Figure 14.- Concluded.

37

.02 = 0.004

.0±

-.2

245-

0 30

a:15o

008 80206

I.-2

0i63486ORDER RAI

Fiue1. nucdifo eoct esrda

388

.02 -0.026

.01-

* .00

-.02

u-w00C-

w a:

D LZ L

0

0 90 :180 270 360ROTOR POSITION, degrees

-2x10.297-

I-

wa-Cfl)w E

.00

-4 .099

0 :16 32 48 64ORDER RATIO

Figure 15.- Concluded.

39

.02.= 0.001

.02

.00 L

-.01

-.00

4-.0

00

z 30

D0

0 90 180 270 360ROTOR POSITION, degrees

-2xIO.221-

M:D

0 .147wa_

W E

.074-

.000

016 32 48 64ORDER RATIO

Figure 16.- Induced Inflow velocity measured at0 degrees and r/R of 0.70.

40

.02 -0.027

.01

.00

-.01.

-.021I*

LL W00

a:rwm C

z 00)

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

.451

0 -301-w

-

4 .150

0 16 32 48 64A ORDER RATIO

Figure 16.- Concluded.

41

.02 = 0.002

.01

.00

-.01

-.02 *

LL W00C.

a:WQwa:M a:15

zc-,0

0 90 180 270 360ROTOR POSITION, degrees

-2X1O.234-

C-) 1.56-W

(0 tW E

.078-

0 16 32 48 64ORDER RATIO

Figure 17.- Induced inflow velocity measured at0 degrees and r/R of 0.74.

412

.02 -0.027

.012

1 .00

-.01

-.02'* I

LL W00Q

0 30r 90±027 6

.40

I.-2

a:

wE0U

1- .604 a.

.0000 16 32 48 64

ORDER RATIO

Figure 17.- Concluded.

43

-0.00i.02-

.0i

.00-

-.02

LL W00L

0 01

21

:)

I-2

0.01

F-J

()0.

.0000 16 32 48 64

ORDER RATIO

Figure 18.- Induced inflow velocity measured at0 degrees and r/R of 0.78.

44

. = -0.028

.02

-.01.00

-.02 i

45.LW00

z 30wcr

:15

0 0

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

II- m0 .355W

.w E

a: .178-

.0000 16 32 48 64

It ORDER RATIO

Figure 18.- Concluded.

45

C0.000

kL .00-

-.01

-.02 * JI

Co)LL W00C.

0 2

a: 901027ROO POITON dgre

m car:

0 oi1w 010 7 6

ROO0OSTO, ere

CI)o

(I

.056

.00

0 16 32 48 64ORDER RATIO

Figure 19.- Induced Inflow velocity measured at

0 degrees and r/R of 0.82.

46

402-X -0.029

.01k/

.00-

-.01

-.02'II

0 90 180 270 360ROTOR POSITION, degrees

-2X1O.542-

.181

0016 32 48 64ORDER RATIO

Figure 19.- Concluded

.02- -0.002

.01

.00

30

0 90 180 27030ROTOR POSITION, degrees

-2xio1±33

C' .089-

.-044

Figure 20.- Induced Inflow velocity measured at

0 degrees and r/A of 0.86.

48

-. 2LX 0.2

* £

0

O 90 1.8 270 360ROTOR POSITION, degrees

xiO.474-

0 1.6 32 48 64ORDER RATIO

Figure 20.- Concluded

49

-0.002

" .00

-.o1i

-.02 *

300

090 iSO 270 360ROTOR POSITION, degrees

-2

.060

0 164 32486

ORDER RATIO

Figure 21.- Induced Inflow velocity measured at0 degrees and r/R of 0.90.

.02 --0.030

-.0

-.02

Is~

o90 180 270 360ROTOR POSIT ION degrees

xio5523-

C. -149-

i 174

.0000 16 32 48 64

ORDER RATIO

FigLre 21.- Concluded

51

=-0.004

.01

-.0:0

0 90 ±80 270 380ROTOR POSITION, degrees

-2)do

.202-

-1-4

si .087-

0 16 32 4b A.ORDER RATIO

Figure 22.- Induced inflow velocity measured at0 degrees and r/R of 0.94.

52

.02 -0.031

.01

* .00

-.01

-.02

45Lw U

z 30-

ID15z U

0

0 90 180 270 360ROTOR POSITION, degrees

-2x10

.488-

QCEF-LO .325-

U) V

000

0- 1.1634 6

ORDER RATIO

Figure 22.- Concluded.

3

.02- -0.007

k 01-

.00

-.01 *

LL W00Q

w (r

O 90 180 270 360ROTOR POSITION, degrees

-2X10

.3'16

0 .211 4 6ORERRAT

.10

.02-X -0.031

IC .01

.00

45-LL W00.

z 30

~' 15z 0

0 o

0 90 180 270 360ROTOR POSITION, degrees

-2X10.483-

a:

I.-

0- 1.1614 6ORE AI

Fiue2.aCnldd

I5

.02 -0.009

.01

.00

-01

-.02 * I*

C')LL W

010

z0

0 90 :180 270 360ROTOR POSITION, degrees

-2X10.420-

I-O- .280-

a L

.140-

0 16 32 48 6ORDER RATIO

Figure 24.- Induced Inflow velocity measured at

0 degrees and r/R of 1.02.

56

*0 -0.032

.01.

C-1

.00

45-LL W00

tw mcT

z 00

00 90 :180 270 360

ROTOR POSITION, degrees

-2xio.484-

0 .322-

000

0: .1614 6

ORDER RATIO

Figure 24.- Concluded.

.0 -0.010

.01

.00

-.01

-.021I*

LL W20

0: 1

0 90 180 270 360ROTOR POSITION, degrees

-2X10.436-

I-C) .291-CL

0

F-4 .145-

.0000 16 32 48 64

ORDER RATIO

Figure 25.- Induced inflow velocity measured at0 degrees and r/R of 1.04.

58

.02 -0.032

.01

.00

-.01

-. 02 *

45)

LL W

00

z 079.0 7 6ROTO POIINwere

w -2

:)

I.-2

U -323-w

wE

:. .162--JM

Ow0 :16 32 48 64ORDER RATIO

Figure 25.- Concluded.

59

=-0.012

.02

.01-

=L.00

-. 01-

-. 02

30-

z C-)0 2

x Z) 10

z -)0 .5

0

I-2

-J31

a

013248 64OHDER RATIO

Figure 26.- Induced Inflow velocity measured at0 degrees and r/R of 1.10.

60

.0 -0.031

.0d.2

.00-

-.02

LW00U

0 3

x 15-2

I-2

C) 317w

.159

0000 63 86

ORDR5RTI

Fiue2. Cnldd

.02 . 0.012

.01

* .00

-.01

-.02 *

20

0 90 1.80 270 360ROTOR POSITION, degrees

-2x10O.218

C.) 145

.073-

0 6 32 48 64ORDER RATIO

Figure 27.- Induced inflow velocity measured at30 degrees and r/R of 0.20.

62

.02- -0.0oo

I .00

-.02

0

0 90 80270 380ROTOR POSITION, degrees

-2xiO

-X-

Q 2n11

* .106-

.0000 :18 32 48 64

ORDER RATIO

Figure 27.- Concluded.

63

.03 = 0.005

.02-

Ii-

S-.021

0)

-2 -2

ar:.10

.)

-J2

164

.0. I -0.01±

* .00

.01 p

30

-- 2

I-2

Q 168

'- 084

A0 ±6 32 48 64ORDER RATIO

Figure 28.- Concluded.

65

=2 0.006

.01 I

.00

-.01-

-.020

.o 20

.01

-.02 . . .. I

:3)

00

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

.115 -

L-IU. .076-w0.

n

- .0380.

0 0 0 . I , , ! . I• ! ± I

0 16 32 48 64ORDER RATIO

Figure 29.- Induced inflow veloctty measured at

30 degrees and r/R of 0.50.

66

=-0.019

.00

I .00

IL W00Q

cc w

0 O

0 90 :LB0 270 360ROTOR POSITION, degrees

-2xio

C3 2M -wCL)Q

1-4

.000 16 -32 48 6ORDER RATIO

Figure 29.- Concluded.

67

.02 ju1 0.006

.01

.00

-.01-

-.02 *

30-LL W

z 20.

ma:

0 0

0 90 1.80 270 360ROTOR POSITION, degrees

-2xlO

.:158

.105

wUE

* .053--

.000- . . I .

0 16 32 48 64ORDER RATIO

Figure 30.- Induced inflow velocity measured at30 degrees and r/A of 0.60.

68

.0 -0.022

.02

.00

.00

00U

a:wwa:

0 90 IS0 270 360ROTOR POSITION, degrees

-2X1O282-

I-0- .188-w0.

.04I-i

0.0

0 16 32 48 64ORDER RATIO

Figure 30.- Concluded.

69

.02- 0.004

.02

.00-

-.0

-.02'

Cn-LL W00

z 20-

Z L0

00 90 180 270 360

ROTOR POSITION, degrees

-2xio.J79

(I

wE0.

.060

00 16 3 12 4 18 6 14ORDER RATIO

Figure 31.- Induced inflow velocity measured at30 degrees and O/R of 0.70.

70

.0± 1 -0.024

If .00V

-.0±

Cl)u- W00

a: w

0

0 0 180 270 360ROTOR POSITION, degrees

-2Xio279-

0 186wCI)U

W -

'4 .093-

.0

0 16 3248 64ORDER RATIO

Figure 31.- Concluded.

71

.02 = 0.003i*

.0

0• -

-.02'

00

oo0 0i i I,

0 90 ±80 270 360ROTOR POSITION, degrees

-2xiO

176

I--

.059-

0 16 32 48 64ORDER RATIO

Figure 32.- Induced inflow velocity measured at

30 degrees and r/R of 0.74.

72

.02 -0.025

* .01-

.00-

LL W00Uz 301ccUiw a:m a:

0

0 90 180 270 360ROTOR POSITION, degrees

-2xlo.318r

a:

0I- 214-wQ.

w E0

.106-J

.0000 16 32 48 64

ORDER RATIO

Figure 32.- Concluded.

73

.02- 0.006

.01

* .00

-.01

-.02

00

0 90 ±80 270 380ROTOR POSITION. degrees

-5-2

0- 101

.05±

.000 I.

0 ±6 32 48 64ORDER RATIO

Figure 33.- Induced inflow velocity measured at

30 degrees and rOR of 0.78.

74

.02- 2~ -0.027

.00-

0

0 90 ±80 270 380ROTOR POSITION degrees

-2xiO

V 240-

.0000 i6 32 48 64

ORDER RATIO

Figure 33.- Concluded.

75

Lt = 0.005.02

1.01-

.00

-.01

trw00wxlO

I~

z 2 0-

00 90 180 270 360

ROTOR POS ITI101 degrees

-3x1O.b48

]E

.283-

-

.0000 16 32 48 64

ORDER RATIO

Figure 34.- Induced inflow velocity measured at

30 degrees end r/R of 0.82.

76

42 -0.025

a .01

ccrwwca:

0 90 i80 270 360ROTOR POSITION, degrees

-2xio.324-

I-

los

.0000 ±6 32 48 64

ORDER RATIO

Figure 34.- Concluded.

0.00:1.02 i

.01

. .00

-.01

-.02 I

30LLW00

z 20rwq:nMmcrD 10Z CL

00, I ,0 90 180 270 360

ROTOR POSITION, degrees

-2xtO.110

r

C0 .073w,,o /IHQ

.037 I-"U

.000 --0 16 32 48 64

ORDER RATIO

Figure 35.- Induced inflow velocity measured at

30 degrees and r/R of 0.86.

78

.02-X -0.025

* .00

-.0±j

-.02'

LLLLM00U

0 2

zx±0

0.36±8 20 6

I-2

L0 .241±wa1

0(

.120

.0000 16 32 4864it ORDER RATIO

Figure 35.- Concluded.

79

0.002

.00

-.0:1 *I

30-LL W

z 20.

M:D ±0z (

0 o

0 90 180 270 360ROTOR POSITION, degrees

-3xlo

.95:1

:C1O- .634-

0-CO

'4 .317

.0000 16 32 48 64

ORDER RATIO

Figure 36.- Ii-,jiced inflow velocity measured a.30 degrees and rIP, of 0.90.

80

.01.Xj=-0.024

.00-

-.01

45-,00

O 30 -8 27036

z C-20 OL

206

.31

-

.10

.0000 16 32 48 64

ORDER RATIO

Figure 36.- -Concluded.

.0 = -0.001

.00-

:=L

-.01

45-LwU)

z 30rW TmuiMLa:M D 15z ODo

0

0 90 180 270 360

ROTOR POSITION, degrees

-3x1O

.822

C1I

.548Lij

C1aC')

LJ

.274-J

.000 , , , , , ,0 16 32 48 64

ORDER RATIO

Figure 37.- Induced inflow velocity measured at30 degrees and r/R of 0.94.

82

.02 "=-0.024

.01

I

.00

-.01 I ,

45-LLW00Z 30-mrw

mr 0 15noz 0

0

0 90 180 270 360ROTOR POSITION, degrees

-2x1O

.281,

M:

a-o .1.88W

0).U

ULU

I-:. .094-

I

0 16 32 48 64

ORDER RATIO

Figure 37.- Concluded.

83

=-0.003.02- 1

V .01 4

.00

-.01 *

30-

LL WJ

z 20.Cr W

M: 10

0 90 180 270 360ROTOR POSITION, degrees

-2x1O.148-

XI.-O .099-Lu

U V

C

.049--J

0 16 32 48 64ORDER RATIO

Figure 38.- Induced inflow velocity measurea at30 degrees and rIR of 0.98.

84

.02 -0.025

.00

-.01

.00z 30A

zQ

00 90 180 270 360

ROTOR POSITION, degrees

-2x1O

iiI 304[.

U 203-

wE

0000 2 86

ORERRAI

Figur 38-10nlued

2- 1 -0.003

V 01

30-

20

a/)

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

i4

I

C.,

.050

0 16 32 48

ORDER RAT IO

Figure 39.- Induced inflow velocity measured at

30 degrees and rlR of 1.02.

86

=-0.024

* .00-

-.01

45-

LLLW00

z 30-

x D 15

:0

0 90 180 270 360ROTOR POSITION, degrees

-2X10

.249-

0 .166-wa-(U,

w E

* .083-

0 16 32 48 64ORDER RATIO

Figure 39.- Concluded.

87

D2 -0.003

.02

.00

-. 01 *

cn-LL W00 20

0: 1

0 :0180 270 360ROTOR POSITION, degrees

-2.10

-108

0 .072-1 .031

.00010 16 32 48 64

ORDER RATIO

Figure 40.- Induced Inflow velocity measured at30 degrees and r/R of 1.04.

88

-0.024

I .00-

-.01 p

rw

0

0 90 180 270 360ROTOR POSITION, degrees

-2xiLO

U. 175w

S .088-

.000-0 16 32 48 64

ORDER RATIO

Figure 40.- Concluded.

89

jL=-0.008

.00

30-ILW

a:WM cc

O 90 180 270 360ROTOR POSITION, degrees

-2X1O.167

T

0

- .056-

0 16 32 48 64ORDER RATIO

Figure 41.- Induced inflow velocity measured at30 degrees and rIR of 1.10.

90

-0.02

-.01-

LL W0 0

0 3

215

0 017

01

-0

.0000 16 32 48 64

ORDER RATIO

Figure 41.- Concluded.

91

.02 =0.007

.01

I .00

-.01-

-.02'I

30)LLWL00U

z 20

0 90 ±8:2006

ROTOR POSITION, degrees

-2Xi0.118

U .079-

(U)

.039-

.000 I .0 16 32 48 64ORDER RATIO

Figure 42.- Induced inflow velocity measured at

60 degrees and r/R of 0.20.

92

.02-~ 0.002

.00-

0

45

0

0 90 :180 270 360ROTOR POSITION, degrees

-2xi0

3I-

U 257-

128

.0000 16 32 48 64

ORDER RATIO

Figure 42.- Concluded.

93

.02.= 0.008

.00-

-.0±1

-.02

30 907027 6

-2

io

.20

I-2

20 163-86

60) deresan0A f0.0

940

.02 j = -0.0 8

.00L

-.01

40

0

0 go 18o 270 360ROTOR POSITION, degrees

-2xiO.436 -

290-

* .1.45-

.0000 16 32 48 64

ORDER RATIO

Figure 43.- Concluded.

95

D02 - 0.010

.00

-2

iO

282-

cco i88

~.94-

001 32 48 64ORDER RATIO

Figure 44.- Induced Inflow velocity measured at60 degrees and r/R of 0.50.

96

.02 - -0.019

.00-

-.01

0 90 IS0 270 360ROTOR POSITION, degrees

-2xiO

.489-

o 326

.163-

0 16 32 48 64ORDER RATIO

Figure 44.- Concluded.

97

.02- I .

.01-

.00-

-. Mi

-.02 I

20

0L g0 ISO 270 360ROTOR POS I T ION degrees

-2xiO

204

.136-

.068-

.00010 i632 48 64

ORDER RATIO

Figure 45.- Induced inflow velocity measured at60 degrees and rIR of 0.60.

98

.02 -0.015

.01-

.00-

-.01-

LL W00

T ww a:m tozc-U

0 0

090 180 270 360ROTOR POSITION, degrees

-2xiO.402-

Cc

I--0 .268-w

a

000

0 16 32 48 64ORDER RATIO

Figure 45.- Concluded.

99

.02- 0.006

12 .01

.00 A

00

0 9018 20 6

z 0-2

I

0

0

I-2

190

1000

.02- OOL

.0±L

* .00-

-.01

-.02'I*

0U

:5-2

I-2

o. 245-w

'- 123

.0001.000 16 32 48 64ORDER RATIO

Figure 46.- Concluded.

101

42- 0.006

.02

.00

z0

0 90 180 270 360ROTOR POSITION, degrees

-2xi0

1±97

O 1j31w

-4 .066-

016 32 48 64ORDER RATIO

Figure 47.- Induced inflow velocity measured at60 degrees and r/R of 0.74.

102

.01 X1=-0.009

-.00 p

90 1.8 2700WOO POIINwere

w -:ca cxiO

ROTO POITON7dgre

ww

wE

~4 .090-

.0000 1.6 32 48 64

ORDER RATIO

Figure 47.- Concluded.

103

D02 -. . 0.002

.00

-.01

30

0 9018.20 6

z -2

Ir

0

I-2

146

.097W

00 1632486

ORDER RATIO

Figure 48.- Induced Inflow velocity measured at

60 degrees and rIR of 0.78.

104

.02- -0.007

.00-

0-0

24

Crwa.

00

010

.02- 0.002

.01

-.01

z.030

z -2

WCrm Tx. . 10

0

-- 2

06 163-86

1054

X.=-0.00m

.00-

0U

IMx 3 1

a-2

01

2m

a.

.0000 16 32 48 64

ORDER RATIO

Figure 49.- Concluded.

107

,03 . 0.000

=L .00

-.0±

-.02

0

-2

xi

I.-20.1

16 326876

.008

.02- 0.0

.00-

-.0±

-.02 a

0 0 90 32O 480 W4

ROORDE RASTIO -r

.0109

D2 - -0.000

-.02 I

0

0

.0

0

0 90 180 270 380ROTOR POSITION, degrees

-2xiO

J .107

~.53-

.0001I* I

0 ±6 32 48 64ORDER RATIO

Figure 51.- Induced inflow velocity measured at

60 degrees and rIR of 0.90.

IM

X=-0.003

3 0

0 g0 180 270 30ROTOR POS2ITI0N, degrees

-2

2m2

S 1.55-

D77

.0000 16 32 48 64

ORDER RATIO

Figure 51L.- Concluded

.02- 0.0

.00

0

0 069s 70W

e. .035

.000 .

0 16 32 48 64ORDER RATIO

Figure 52.- Induced inflow velocity measured at

60 degrees and rIR of 0.94.

112

.02 -0.001

.02

.00

.00

.0

wa:m a:

z 00

0 90 180 270 360ROTOR POSITION, degrees

-2x1O

I

L0 1380)U]

0

S .069-

0 16 32 48 64ORDER RATIO

Figure 52.- Concluded.

113

.02 -0.003

.02 I

.00-

0 20c 9010276

.11 Q

I-2

O- .075-wa-

.038

.000 I

0 16 32 48 64ORDER RATIO

Figure 53.- Induced inflow velocity measured at60 degrees and r/R of 0.98.

114

.02 0.002

.01

.00

45,-

z 0 901027 6ROO POIINwere

w 10 U

0 0

-- 2

1115

.02- -0.003

.01

* .00

-.01

-. 02 *

0 0

0 901027Q6

S20-2

q:w

)0.

0

02

-- 2

1125

.0 0.006

* .00

-. 01 *

00

z 30

a-w a: 0)

a-211i

0 .000-

C11

.02- -0.003

.0:1

.00-

-.01

-.02 *

00

i0

.10

.050

.050

.000-0 16 32 48 64

ORDER RATIO

Figure 55.- Induced Inflow velocity measured at60 degrees and r/R of :1.04.

118

.0 0.008

.0±

-.0

00

0 90 180 270 360ROTOR POSITION. degrees

-2xiO

.141

CrQ .094-w0-co

0 16 32 48 64ORDER RATIO

Figure 55.- Concluded.

119

.02 - -0.004

.01 r

-.02

00

z -2

io.11

0.

t .074A

.~.037

.000 . I .I

0 16 32 48 64ORDER RATIO

Figure 56.- Induced inflow velocity measured at60 degrees and rIR of 1.10.

120

.01 X* 0.011

-. 01 *

00

T--3

DOl

I-3

a:

w E

0 16 32 48 64ORDER RATIO

Figure 56.- Concluded.

121

.02 - i-0.003

=L .00 AV

-.02 p

30

-2

0 90 i80 270 360ROTOR POSITION, degrees

-2xiO

234

I-*156

.078

0 ie 32 48 64ORDER RATIO

FigLre 57.- Induced Inflow velocity measured at90 degrees an r/R of 0.20.

122

.01 X1=0.005

.0

30

0 90 180 270 380ROTOR POSITION. degress

-3)doM84

.410

205

0 1832 48 84ORDER RATIO

Figure 57.- Concluded

123

.01011

.00

0go iao 270 30ROTOR POSIT I OR degrees

-2xio248-

D8-

016 32 48 64ORDER RATIO

Figure 58.- Induced inflow velocity measured at90 degrees and rIR of 0.40.

124

.02 - -0.013

.00-

30

.0

120 0I2730

ROTORDER ATIOere

-12

.02- 0.007

.00

-.01

0

0 90 :180 270 360ROTOR POSITION. degrees

-2xiO406-

o. 204

1..02

0±6 32 48 64ORDER RATIO

Figure 59.- Induced inflow velocity measured at

90 degrees and rIR of 0.50.

126

X.=-0.010

.01-

.00-

-.01

-.0

4-2

0. 30

00 190 32 270 640

RORDER ATIOere

U 2127

.020.00

.01

.00

-.02

45-

0)0 90 ±80 270 360

ROTOR POSITION, degrees

-2x0O

I-2

Q .174w

.087

0 16 32 48 64ORDER RATIO

Figure 60.- Induced inflow velocity measured at90 degrees and r/R of 0.60.

128

.02 i= -0.005

.01

.00

-.0

-.02

45

LLW00V

DOz 30

0 C-2

xiO353-

a:

0 236-w

w E

.118-

.00040 16 32 48 64

ORDER RATIO

Figure 60.- Concluded.

129

.02-. 0.003

.00

-.01 *

tL W00

0 0

T-2

01

.148-

D

(I

Co W

.049-

016 32 48 64ORDER RATIO

Figure 61.- Induced inflow velocity measured at

90 degrees 3nd nAR of 0.70.

130

.02 =0.000

.0i

* .00

-.0±L

0.0

4-2

0 U0

245

-)0

0j0 16 320 278 364

ROORDER ATIOere

Fiue6.2Cnldd

x131

.03- 0.001

.02

-.00-p*

15

30

0 90 IM8 270 360ROTOR POS IT ION. degrees

-2X10

229-

I-C) 153-

.076-

0 1.6 32 48 64ORDER RATIO

Figure 62.- Induced Inflow velocity measured at

90 degrees and rnA of 0.74.

132

.03 0.001

.03-

.02

S .00

-. 01

-. 02 *

457

00

90D 18120 6

ROTOR POSITION, degrees

-2xiO

.404-

ccU 269-

a.

w E

.00

'-4 .135

.3 0.001

02

.:0.

.00-

-.01

45

0w

0 90 180 27030ROTOR POSITION, degrees

-2xiO

.i54C) 13

C.

. .051

1 32 48 64

ORDER RATIO0

Figure 63.- Induced inflow velocity measured at90 degrees and r/R of 0.78.

134

.03 0.004

.02-

.01

-.0±

-.02

0.0

4-2x1O

0 53

15a

00 96 328 480 364

ROORDER ATIOere

Fiue6.2Cnldd

xJ133

D2 1 O.00i

Il .01

.00

4-2

15

C.)

02

90TO deres ndrR ode0.82.

1360

.03 0.006

.02-

.00

* .00

-0

-.0W

00

w -2

O-)0210

0 LO

-- 2

a.0

0 ±6 32 48 64ORDER RATIO

Figure 64.- Concluded.

137

.03- -0.001

.02

L .01

=L .00

-.01r

-.02 I

4-2

z - 0

151

0 7z

-- 2

0- 1:1 32486ORE AI

Fiue6.anucdifo-eoct esrda90dges n / o .6

138

.03 0.008

.02,

a .00

-.01

-.02-

-.031II

00-

.w

z 400r

0 M01027 6

xiOF

22

xIL

CU -1.76-wa-

w Ea -

-4 .088--i

.00

0 :16 32 48 64h ORDER RATIO

Figure 65.- Concluded.

139

.i = -. 007

.00

-.01

ILW

00

.)4

0 08

a-2(j)o

C.-' .09

.040

.000 p

0 :16 32 48 64ORDER RATIO

Figure 66.- Induced Inflow velocity measured at

90 degrees and r/R of 0.90

140

.01 = 0.010

.00±

-. 0± 1

LL W00Q

a: ww a

Z)Uz U0

0 90 ±80 270 360ROTOR POSITION, degrees

-3xio.686-

D

0 .457-wa.

0V

a .-

-ia.

.000-0 :16 32 48 64

ORDER RATIO

Figure 66.- Concluded.

141

=-0.006.02 I

-. 01

.0U

00 30

z 00

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

.132-

0 .088-w(00

-4 .044

.000 16 3 12 4 18 64ORDER RATIO

Figure 67.- Induced Inflow velocity measured at

90 degrees and r/R of 0.94.

142

.01 1 =0.010

45

LL W00

a: w

0 90 180 270 360ROTOR POSITION, degees

-3XiO.648-

Dcc:0 .432-wa.

.216

a.0

0iM 32 48 64ORDER RATIO

Figure 67.- Concluded.

143

.02 = -0.006

.01

.00

-.01 I

4-3C/O

a:

0 0

I.-3.857

D

0 16527416ORE AI

Fiue6. nucdifo eoct esrdaC0dges/n /)o .8

144=

.01 1 =0.010

-01

45-(Ti

LL W00

0 0

T--3

.wCa:

D UwE0

0

-J3

I

.00

0 16 32 48 64ORDER RATIO

Figure 68.- Concluded.

145

Ji.-0.004

.00

-.02±

30

4 -2

0

I-2

o. .070-

.035

.0001 10 M6 32 48 64

ORDER RATIO

Figure 69.- Induced Inflow velocity measured at90 degrees and r/R of 1.02.

146

.0 0.009

.00-

* .00

0 C.

T--3

a:

0

-- 3

a-

0 16 32 48 64ORDER RATIO

Figure 69.- Concluded.

147

.02 = -0.004

=L .020 I

454

.00)

.0

.1

00 g0 180 270 360

ROTOR POSITION, degrees-2

xiO.104

I--

C.)

I.. .035

0 1.6 32 48 64ORDER RATIO

Figuire 70.- Induced Inflow velocity measured at90 degrees and rIR of 1.04.

148

1 .01 1 = .0

-.01 *

45-

0

w f-3xi

.0

I-3

Q' 267-w

.133

0 16 32 48 64ORDER RATIO

Figure 70.- Concluded.

149

.02 - -0.006

Oil

.00

0.0

z 0-2

15

0

07

a-2Q~X10

00 U) 2 86

ORDER RATIO

Figure 71.- Induced Inflow velocity measured at

90 degrees kind r/R of 1.10.

150

A X - 0.006

.0± ~

-.01

00Q

0 3

I-3

0 J42W

.07

.000 * I *I

0 16 32 48 64ORDER RATIO

Figure 71.- Concluded.

151

.01 - -0.006

.00

-01

00

M -2

z -7

0)0

D

'4 .055-

.000-0 16 32 48 64

ORDER RATIO

Figure 72.- Induced inf low velocity measured at

120 degrees and r/R of 0.20.

152

.02 0.009

.02

.00-

-.01

45-LL W00Q

m a:

zc-,0

00 90 180 270 360

ROTOR POSITION, degrees

-2XlO

-354-

0 236-a

wLJE

.118a

.0000 16 32 48 64

ORDER RATIO

Figure 72.- Concluded.

153

.02.= 0.005

=L .00

-.01 *

0 30c 901027

ROO POIIOdereC-2

.100.

-j2

0 10 163 86

1054

.02 = -0.005

.01-

.00-

-.0±

-.021I

45-

00

S30-2

.-.27

0

00 90 32 480 364

ROTORDER ATIO ere

x155

=020.004

I.- ".0±.020

.01 I

045-

60 g 8 7 6I-2

C .07

Co.

.0000 16 32 48 64

ORDER RATIO0

Figure 74.- Induced inflow velocity measured atR20 degrees and r/R of 0.50.

156

.02-X -0.002

.01

.00

45

0U0 9 8 7 6

ROTO POIINwere

w cma:

z .)

00 16 320 480 64

ROORDEROATIOders

Fiue7-2Cnldd

C15

l = 0.004.02 i

I)

O:L

LW

00 0

0

0 90 ±80 27030ROTOR POS IT ION, degrees

-2xl ().230-

I--S 53

.

0 0

-J30

0 ±6 32 48 64ORDER RATIO

Fig, re 75.- Induced inflow velocity measured at120 degrees and r/R of 0.60.

158

.02-~ 0.000

.0 -

.00--.01

-.02-

45

000w

Tl a, 15

0 90 180 270 360ROTOR POSITION. degrees

-2x10

251

I"xco Uw M

'4 .084--Ja.

.0000 16 32 48 64

ORDER RATIO

Figure 75.- Concluded.

159

.02- -0.000

.02 I

.00-

00

z 2 2

iO

C0.) .9

-- 2

04 1. 2 86

±2 deresan rRof0.0

160

.02 0.003

.002

-.01.

.00

LL W00U

0 0

21

I-2

U. .140w0.Ca

.070-

0 16 32 48 64ORDER RATIO

Figure 76.- Concluded.

161

-0.003

-.01 I

00

Z) iz Cc

0

0 90 180 270 360ROTOR POSITION, degrees

-3xiO

.882-

cro- .588-W

~4 294

.000 I

0 16 32 48 64ORDER RATIO

Figure 77.- Induced inf low velocity measured at

120 degrees and r/R of 0.74.

162

.01 - 0.004

* .00-

-. 01 I

30

0 901027Q6

z -2

Ir

0

I.-2

184

w E

0 16 32 48 64* ORDER RATIO

Figure 77.- Concluded.

163

-0.006

.OK

.00-

30LLW00C.

z 20

X) :10

.1±

I.-2

C.) .077-w(-CoU)

0 -4

-039

.000 *

0 16 32 48 64ORDER RATIO

Figure 78.- Induced inflo~v velocity measured at

120 degrees and r/R of 0.78.

164

.0±L X- 0.006

I .00

4-2

w c

0.

-- 2

U 10 1 2 86ORE AI

Fiue7..Cnldd

JJ =-0.005

.00-

0.0

4-2

0z 3

TwCI

0 0 320 270 364ROORDEROATIOders

Fiue7-2nucdifo eoct esrda

12 eresad / f .2

166

=0.007

1Z

.00

-.0± 1

00

0 00 ±80 270 360ROTOR POSITION, degrees

-2X10.178

CLca

.059-

0 :16 32 48 64ORDER RATIO

Figure 79.- Concluded.

167

ii.=-0.010

* .00

-.01 *

20

0

I-2

-4 .034

0 1.6 32 48 64ORDER RATIO

Figure 80.- Induced Inflow velocity measured at

120 degrees and r/R of 0.86.

168

.01 1 =0.006

-.01 *

ii:0

0 90 180 270 380ROTOR POSITION, degrees

-2xi0

10i

Ow

'4 .034

0 1632 48 64* ORDER RATIO

Figure 80.- Concluded

169

.Oi

-.2

.1)

I-2

.0000 16 32 48 64

ORDER RATIO

Figure 8:1.- Induced Inflow velocity measured at120 degrees and rIR of 0.90.

170

X .= .00

.01 0

-3O:

30

52

00 16 32O 480 384

RO OR ER ATIO ere

1171

.0± -0.010

1. 00

-.0±

00

06010 7 6

0.08822078

I-3

C.) .551±

276

.000 I

0 1632 48 64ORDER RATIO

Figure 82.- Induced Inflow velocity measured at

120 degrees and r/R of 0.94.

172

=0.008

-.01

00

z 0-3

04

0.

0 90.1080038

ROORDER ATIOere

-37

.0±

454

* .0

-3

.7±

0

0 7

-33

.OOc.71 -63 86

ORU RATIOFiue8.Wnue nlwvlct esrda

±2Uere)ndrRo .8

17

.01 1 =0.005

00

0 90 180 270 360ROTOR POS IT ION, degrees

-3xiO.490-

c-C.) .326-

.163

.000 ** I0 16 32 48 64ORDER RATIO

Figure 83.- Concluded

175

.01 -0.008

.00

30

090 i80 270 380ROTOR POSITION, degrees

-3x10

.874-

M3-

291

0 16 32 48 64ORDER RATIO

Figure 84.- Induced Inflow velocity measured at120 degrees and r/R of 1.02.

176

=0.004

-.0i

-3

315

0)

- :10

.000 *

0 ie 32 48 64ORDER RATIO

Figure 84.- Concluded.

1 77

-0 -0.012

=L4

.00

0 0

00 9018 20 6

0i.60

I--3

C.) .454-w

-. 227-

.000 - A .f0 16 32 48 64

ORDER RATIO

Figure 85.- Induced inflow velocity measured at

120 degrees and r/R of 1.04.

178

=0.003

',

co~LL W00Q

00

0 90 180 270 360ROTOR POS I TI OR degrees

-3xi0O362-

U 241w

. 121

.000 *

0 16 32 48 64ORDER RATIO

Figure 85.- Concluded.

179

-0.011

30

0 g0 :180 270 380ROTOR POSITION, degrees

-3xiO

C., -rag9

26

0 16 32 48 6ORDER RATIO

Figure 86.- Induced inflow velocity measured at120 degrees and r/R of 1.10.

180

= 0.003

.00

I, -

-. 01 p * !

0 70 180 270 380

ROTOR POSITION, degrees-3

xiO

290

0

0 16 32 48 64

ORDER RATIO

Figure 88.- Concluded.

181

-- 0.015

.00

-.0:1 *

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

10i

C. .067-

004

D3-

0 16 32 48 84ORDER RATIO

Figure 87.- Induiced inflow velocity measured at:150 degrees and r/R of 0.20.

182

.00.0i

0

0 90 ±80 270 360ROTOR POSITION, degrees

-2X1O.341

C-C) .227-

0 16 32 48 64ORDER RATIO

Figure 87.- Concluded.

183

.02 = -0.006

.02j I

.00-

LL W00C-

q:cw

zcQ0

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

251

0- .167-wa.C00W E

.084-J0.

.000 p .. I

0 16 32 48 64ORDER RATIO

Figure 88.- Induced Inflow velocity measured at

150 degrees and r/R of 0.40.

184

=0.002

.00

.01 *

45LL W00Q

0 3

0i

0 014

I-2

.070

0 :6 32 48 64ORDER RATIO

Figure 88.- Concluded.

18.5

-0.007

.oi

45-06

z 30

00 90 180 270 360ROTOR POSITION, degrees

-2xiO

287-

D

C-

.096-

floG0 16 32 48 64

ORDER RATIO

Figure 89.- Induced Inflow velocity measured at150 degrees and rIR of 0.50.

186

.01 ~ =0.002

-.01 0

0 0 9 8 7

ixi

- 0

-J2

10

O. 16126426

ORDER RATIO

Figure 89.- Concilded

187

-0.004

* .00

-.0± I*

WC.)0 3

0: 90w027

20

0

0 go.L037038

a-2cio

20-

C. 163274-6ORE AI

Fiue9. nucdifo eoct esrda

±50 dereVn)rRo .0188

.02 0.003

.0:12

.00

-.021

0Q

S30-2

~0

2-2

.492

-1 .28-w0.

-

1640.

.00 .

016 32 48 64ORDER RATIO

Figure 90.- Concluded.

189

-0.005

.00 \r(

0Q

z 3 -7

:145

0 r

I--3

.630-

VI)U)W E

M35

.ooot 06 3 :2 48 *

ORDER RATIO

Figure 91.- Induced inflow velocity measured at

150 degrees ant rIR of 0.70.

190

.02 0.004

I .00-

-. 0:1

-.02 *

LL W00U

0 3

M -2

0 015

:-2

I--

a.

< A0 :16 32 48 64

ORCCER RATIO

Figure 91.- Concluded.

-0.006

454

0 3

-2 C-2

0 0

I-2

C.) .077-

.00010 16 3248 64

ORDER RATIO

Figure 92.- Induced inflow velocity measured at150 degrees and rIR of 0.74.

192

.02- xj 0.004

.0±

.00-

-.0±

-.021*

00

.8±6

z 40

Is20

0 0 ±6324

ROORDER ATIOere

Fl-29. Cnhdd

x193

J. =-0.007

* .00

-.01 p

1W3

0.

I-2

.- .0874

0 63W86

194 9

.02 - -0.004

.0±

-.00

-.0±

-.02 'I**

45-C/)IL Wo

0 0

0 90 ±80 270 360ROTOR POSITION, degrees

-2x1o

r

Dc-

187

.00

0 16 32 48 64ORDER RATIO

Figure 93.- Concluded.

195

* .000

-.01 0

01

4-2

15,

0

I-2

a-

- .045-

0 16 32 48 64ORDER RATIO

Figure 94.- Induced inflow velocity measured at

i50 degrees and riR of 0.82.

196

=D 0.005

.021

.00

-.01

-.02 *

45

0 3

ir--2

.44

0 29

00 16 320 480 640

ROORDEROATIOders

29397

-0.~.00 7

* .00-

0 90 1.80 270 380ROTOR POSITION, degrees

-2XiO

.133-

'4 .044

0 16 32486ORDER RATIO

Figure 95.- Induced Inflow velocity measured at

150 degrees and r/A of 0.86.

198

.02-X 0.005

.00

0

0 g0 ±80 270 360ROTOR POSITION, degrees

-2xiO

296-

AW-

099-.000

0 1632 48 64ORDER RATIO

Figure 95.- Concluded.

lo9

-.001 Ip*

0

090 180 270 380ROTOR POSITION, degrees

-2,do

-128-

C) .086

-' .043-

0 i6 32 48 64ORDER RATIO

Figure 96.- Induced Inflow velocity measured at

150 degrees and rIR of 0.90.

200

=0.004

44

C0

xiO12

00 go 32 480 640

ROORDER ATIO ere

Fiue 6- ocldd

.0201

.01 P -0.0019

.00

-.01 I

00

S30-3

15

C.) .7

0 O

-- 3.87

I

'Ct

.000 . *

0 16 32 48 64ORDER RATIO

Figure 97.- Induced inflow velocity measured at:150 degrees and r/R of 0.94.

202

.01 X~0.005

* .007

-.01 *

45.-

30

0 90 :18O 270 360ROTOR POSITION degrees

-2xiO

C.' .075-wa-

S .038-

.000 I

0 16 32 4864ORDER RATIO

Figure 97.- Concluded.

203

II.=-0.0±0

* .00

0.0

4-3

.-

z - 0WIt

q:

0 96 32 480 364

150 O dere SION ndegree098

2040

y=0.004

*.00N

o

-.0:1 *

U- w00

zc-)0

00 90 180 270 360

ROTOR POSITION, degrees

-3X1O

.929-

Ir

0 .820-w0) U

.0203

.01 = -0.010

.00

:LW

-.01"

457

0

0 90 180 270 360ROTOR POSITION, degrees

-3xlO

.742

W r_

I-o .494w

0. M

0

01 2

00 3 .0.270 .34

ORDER RATIO

Figure 99.- Induced inflow velocity measured at150 degrees and r/R of 1.02.

206

At - = 0.004

Z

000

--01

45

To S 15

U

0 3 1 , , iI , IIU, 0

.10

0 90 180 270 360ROTOR POSITION, degrees

-3xiO.481

IrI-

0 .321 3

a-

S .:160

.0000 :16 32 48 64

ORDER RATIO

Figure 99.- Concluded.

207

.01 - -0.011

a .00

-. 01 *

zcl)0U

z 0-3

cc

w 0'

01 244 18 20i6

RO0OR POIIN degree

0 164284 6

208-

.0± =0.004

-.01 0

45-

0

z -3

w :

x ) :15l~f

ROTOR POITONldgre

-J-3a. Il I)

.40

.2903-*

0 16 32 48 64ORDER RATIO

Figure 100.- Concluded.

20~9

.0i -0.012

* .00.

-3xiO.844-

.430 k

0 16 32 48 84ORDER RATIO

Figure 101.- Induced inflow velocity measured at150 degrees and r/A of 1.10.

210

.01. =0.0

-.0iI*

0 90 1.8 270 380ROTOR POSITION. degees

-3)do

348-

.00C0 L A

0 1.6 32 48 64ORDER RATIO

Figure iOtL- Concludled.

211

i:-0.016

.02 =

.01

I

.00

-.01 ' *

30

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

125 •

I- h0 .084 -W

.042 •

.0000 16 32 48 64

ORDER RATIO

Figure 102.- Induced inflow velocity measured at

180 degrees and r/R of 0.20.

212

.01 1 =0.014

44

0

0 90 180 270 300ROTOR POSITIOtL degrees

-2xio.149-

.0-0

0 is 32 48 64ORDER RATIO

Figure 102.- Concluded.

213

.0± =-0.0:12

.00-

090 I80 270 380ROTOR POSITION, degrees

-2

f 238-

.000__ _ _ __

0 18 32 48 64ORDER RATIO

Figure 1L03.- Induced inflow velocity messured at

180 degrees and r/A of 0.40.

214

-O 0.009

.001

0o 9018 270 360ROTOR POSITION, degres

)dio303-

~2W

0 18 32 48 64* ORDER RATIO

Figure 103.- Concluded

215

.02 1 * -0.012

.0-2

305

152

000 go 32 480 364

180 RPITO degrees rP f0.0

2162

.02- 0.009

.02

.00-

-.02 *

4-2

30

0

Figure POI4.- Cnlded.ee

2217

.00

090 10270 380ROTOR POS IT ION, degrees

-2xio

V 202-

.10i

.000 L0 18 32 48 84ORDER RATIO

Figure 105.- Induced inflow velocity measured at

180 degrees and r/R of 0.80.

218

.0 0.009

-.021

.01

0

0 90 ±80 270 380ROTOR POSITION. degrees

-2xio.790-

-27

0 18 32 48 84ORDER RATIO

Figure 105.- Concluded

219

.02- -0.01

.01.

-D

0

0 90 1.8 270 3W0ROTOR POSITION, degrees

-2295-

0 Imee .0

0 O32 48 64ORDER~ RATIO

Figure 106.- Induced Inflow velocity measured at180 degrees and r/R of 0.70.

220

45

Oo GO18 270 3190ROTOR POSITION. degros

-2xiO

.701-

'4 234-

0 ia 32 48 64ORDER RATIO

Figure 108.- Concluded

221

.02- 1 00

.01

a .00

-.02[

45-2

1,5

30

!~ROO 180TIO degreesanIAo0.4

2222

.02-~ 0.009

.01-

S .00-

-.01-

-.02

45-

00 3

a:w

co a00

0 90 180 270 360ROTOR POSITION. degrees

-2X10

.728-

cc0 .485-w0.W En)w E

.-' 243-

.0000 16 32 48 64

* ORDER RATIO

Figure :107.- Concluded.

223

.02 -0.016

.02-

.00-

-.01-

00

q:w

D L)

0 o

0 90 180 270 360ROT OR POSIT ION. degrees

-2x10

.292-

O Aj95w0-

w E

- .097-

a.0

0 :16 32 48 64ORDER RATIO

Figure 108.- Induced inflow velocity measured at180 degrees and r/R of 0.78.

224

.02-~ 0.009

* .00

-.02

co,00C

coa:

0 0O 90 180 270 360

ROTOR POSITION, degrees

-2X10.567-

a:I-0 .378-W

.00

Fiue10. o-ldd

~' .225

42.0001

.00-

-.01

Co,LL W00Q

z 30

z C-2

x:LO287-

.096

.00

0 :16 32 48 64ORDER RATIO

Figure 109.- Induced inflow velocity measured at180 degrees and nAR of 0.82.

226

.01 X~=0.00.9

.00

-01

-. 02 *

00

C.7

a:

z0

-- 2

aw E

.0000 16 32 48 64

ORDER RATIO

Figure 109.- Concluded.

227

.02 jL -0.017

.01.

kL

.00

-.01 p

DC-,

0 0

01

I-2

0.C,,0

I--

0 61 32486ORE AI

Fiue10-Idcdifl1vlct esrda18(ereandnlo .6

228

.01 X~=0.008

.01

-.02 I

00

'4 30,M w

z C-)0

0 90 180 270 360ROTOR POSITION, degrees

-2)dO

.311 -

Q 207-wa-

0

' .1.04

.00

0 16 32 48 6GRDER RATIO

Figure 110.- Concluded.

229

-01 -0.017

0 V

0 0

261

I-2

Q .174w

)0)

' .087-iQ.

0 :16 32 48 64ORDER RATIO

Figure 111.- Induced inf low velocity measured at180 degrees and r/R of 0.90.

230

AL 0.008

.00

-.02±

00

S30-2MxiO

w ama:

0 0

-- 2

a:1I

0 10 163-86

C23

a .00

LL W00C.

z 30

z C-2

20

I-2

0 139w

'' .070-

.OJ

0 i6 32 48 64ORDER RATIO

Figure 112.- Induced inflow velocity measured at180 degrees and r1A of 0.94.

232

.0 0.009

.00

-.01

LL W00

0 0

I

0 090

0

-- 2

a:

0 3 4 6w RE AI

Fiue11a.onldd

C233

.01L -0.020

.00

-. 01 I

00

0 0'9 8 7 8T--2

a:

0J--

0 16 328 270 60

RO80 PereSION ndrgRo ee.98

2342

.0i = .0

.00

0)

0 90 ±80 270 380ROTOR POSITION, degrees

-2,do

U .076-

faE

.00010 ±632 48 64

ORDER RATIO

Figure l13.- Concluded.

235

I.=-0.020

.01

-.01

-.02 I* S

-2xiO

J15-

O. .078-

0 1632 48 84ORDER RATIO

Figure 114.- Induced inflow velocity measured at

180 degrees and r/R of 1.02.

236

0.00

10

WO g0 ±80 270 380ROTOR POSITION, degrees

-3X1O.729-

S 243-

00 16 32 48 64* ORDER RATIO

Figure 114.- Concluded.

237

.01 I1

.00

-.01 I*

0 90 ±80 270 380ROTOR POSITION, degrees

xo-2.185-

o. .124

.000,0 16 32 48 64

ORDER RATIO

Figure 115.- Induced inflow velocity measured at

210 degrees and r/R of 0.20.

238

=0.018

.004

-.01 *

40

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

lea

C 124

.062-

.OWc0 ±632 48 64

ORDER RATIO

Figure 115.- Concluded.

239

.0:1

* .00-

-.01-

-.02

0 90 ±80 270 380ROTOR POSITION, degrees

-2xio.606-

Q .403-

S .202

0is 32486

Figure i16.- Induced inflow velocity measured at210 degrees and r/R of 0.40.

240

.02- 01 .007

-.02

45

30

.0

0 g0 180 270 360ROTOR POSITION, degrees

-2xi0

V. .07-254-

0 ±6 32 48 e4* ORDER RATIO

Figure i18.- Concluded.

241

.02 -0.009

.020I*

0 0

2

30

0

210 O dere s and rR ofe0.50.

2422

.03 = 0.005

.02

.00

-.01

-. 02 I I ,

60O

U g0 :180 270 360ROTOR POSITION, degrees

-2

I-.981

U .854

327-

44 ~.0 0 0 I & ' =0 i6 32 48 64

ORDER RATIO

Figure Ii7.- Concluded.

243

4 - -0.010

.02

--01

.0

0 90 180 270 360ROTOR POSITION, degrees

-2xio252-

C. 168-

.084-

0 16 32 1.8 64ORDER RATIO

Figure 118.- Induced inflow velocity measured at

210 degrees and r/R of 0.60.

244

X1=i 0.002

* .00-

tr w

0

0 90 :180 270 360ROTOR POSITION, degrees

-2xiO

.364-

Q 242-

0 16 32 48 64ORDER RATIO

Figure :118.- Concluded.

245

II .

.020 I

kr W15\

00 90 ±.80 270 360ROTOR POSITION, degrees

-2x±0256-

C., 1j71

'4 .085-

0 16 32 48 64ORDER RATIO

Figure 119.- Induced Inflow velocity measured at210 degrees and r/R of 0.70.

246

.01 - 0.002

40

3 .00-

4-20i)

5'

I-2

U .237-

.0000 iG 32 48 64

ORDER RATIO

Figure ±19.- Concluded.

247

.02 . -0.008

.01

.00

45-tLW00

0

0 90 180 270 360ROTOR POSITION, degrees

-2

X1.280

0- .187w

a -.

'4 .093-

-000

0 16 32 48 54ORDER RATIO

Figure 120.- Induced inflow velocity measured at210 degrees and nAR of 0.74.

248

.02 0.002

.02

.00-

-.01

0002

z 0-2

w c

0.

-j2

0 2249

_M.3-0010

2

.47

0

0

210 O dereesK addr grof e.78

2502

- 0.003.01,

.0

-02

0 go 180 270 30ROTOR POSITION degrees

-2X1O

.347-

C. m i.1±4

.0000 16 32 48

ORDER RATIO

Figure 12.- Concluded.

251

.02 m.C01

DI

0 go ±80 270 30ROTOR POS IT I OR degrees

-2X:LO

2W89

Im

0 ±832 48 84ORDER RATIO

Figure 122.- Induced Iunflow velocity measured at2M degrees and r/R of 0.82.

252

*0.004

.001

II

-.01

0 g0 ±80 270 3W0ROTOR POSITION, degrees

-2)do

0 .237-

.0000 16 32 48 G4

ORDER RATIO0

Figure 122.- Concluded

253

.5-0.006

.00±

2

227

gI:Li

0 18 32 48 84ORDER RATIO

Figure 123.- Induced inflow velocity measured at

210 degrees and r/R of 0.86.

254

.0± X1 .003

.00-

0o ISO1 270 30ROTOR POSITIOI& doees

-2X±io

.0001 32 48 84ORDER RATIO0

Figure 123.- Concluded.

255

.02- -Mo

15 .01

.00

090 :180 270 380ROTOR POSITION, degrees

-2xiLO.197-

x

C.) .131

~4 .068

0 1632 48 64ORDER RATIO

Figure 124.- Induced Inflow velocity measured at210 degrees and rIR of 0.90.

256

.0± 1 -0.003

45,

0

0 90 I±80 270 3180ROTOR POSITION, degrees

-2xiO50

3 100

0 18 32 48 84ORDER RATIO

Figure 124.- Concluded.

257

11t -0.01L2

.01

-.021p

3-2

10

I-2

19-

0 .064-

.000-

0 i6 32 48 64ORDER RATTO4

Figure 125.- Induced Inflow velocity measured at

210 degrees and r/A of 0.94.

258

.0± jO. 0

-3

5

0 go6 32 480 34ROORDEROATIOders

.8259

." ji * -0.011

|=L

=L

-.00

45

15

0 90 ±80 270 30ROTOR POSITION, degrees

-2xiO

124

o .041

0 18 32 48 64ORDER RATIO

Figure 126.- Induced inflow velocity measured at

210 degrees and r/R of 0.98.

260

.01 X = 0.003

.00

-.01

45-

xiO

LI W

I-

z 30

crw

0

0 90 180 270 380

ROTOR POSITION, degrees

-3x10

- 3.73-J0-

* I

.0000 16 32 48 64

ORDER RATIO

Figure 126.- Concluded.

261

Iiii

* .00

45

30

0 90 180 270 380ROTOR POSITION, degrees

-3xL0

J319

~273-

• 0 0 0 p * * * U

0 16 32 48 64ORDER RATIO

Figure 127.- Induced inflow velocity measured at

210 degrees and r/R of 1.02.

262

.± X 0.003

.0i5

0 90 ±80 270 380ROTOR POSITION, degees

-3xlO

0 248

Im8

0 :L2 32 48 64ODRRATIO

Figure 127.- Conmluded

263

h.-.012

.00

090 180 270 300ROTOR POSITION, degrees

xiO

0 ±8 32 48 84ORDER RATIO

Figure 128.- Induced Inflow velocity measured at

210 degrees and r1R of 1.04.

264

.01 X 1 0.00

44

go 9ISO 270 3190ROTOR POSITION. degeea

-3)do

.4±0

0 273

ix37

.000'A0 le 32 48 64

ORDER R~ATIO

Figure 128.- Concled

265

.00 ~ *-.1

0 go ±80 270 3180ROTOR POSITION, degrees

-3XiO

222-

im a0 16 32 48 64

ORDER RATIO

Figure 129.- Induced inflow velocity measured at2:10 degrees and r/R of 1.10.

266

.Oi X1 0.003

-3

150

.420-

C) 280-

.0 i 32 48 84ORDER RATIO

Figure 1L29.- Concluded

267

D02 - 0.1

01 .0

-.Oi0-----

30

0 90 ±80 270 360ROTOR POS IT ION degrees

-2XiO

2W69

0-4

0 16 32 48 64ORDER RATIO

Figure :130.- Induced Inflow velocity measured at240 degrees and r/R of 0.20.

268

.01 0.0i6

.00-

-.01

15

08

00 ISO 320 386ROORDER ATIOere

-26

.02±-.0

* .00

-.0±

-.02 p

45-2

*43

23±

400

0 16 32 48 64ORDER RATIO

Figure 131.- Induced inflow velocity measured at240 degrees and r/R of 0.40.

270

.01-

.00-

-D2

V1

ROORDER ATIOdes

X271

.0- -. 003

.001

000

-1

O90 :18O 270 3160ROTOR POSIT IOR degrees

-2

.4:18

a- 209-

O 18 32 48 84ORDER RATIO

Figurr. 132.- Induced Inflow velocity measured at240 degrees and r/R of 0.50.

272

.00-000

30

0o 90m8 270 380ROTOR POSITION, degrees

-2X10.707-

.471

~2W

O0% ±16 32 48 84ORDER RATIO

Figure 132.- Concluded

273

.02 -0.005

.01-

.00

-.01

-.02

0 g0 1S0 270 380ROTOR POSITION, degrees

-2xio

Q .57-

0 18 32 48 84ORDER RATIO

Figure 133.- I nduced inflow velocity measured at240 degrees and r/P of 0.80.

274

.021 -(Lf

* .00-

-.01

-.02 *

0g 90 .8 27030ROTOR POSITION, degrees

-2xiO

.807

0 1832 48 84ORDER RATIO

Figre 133a- Concluded.

275

.02-

0

-1

go 9 180 270 380ROTOR POSITION, degrees

-2xio

K.25

0 A8 32 48 84ORDER RATIO0

Figure 134.- Induiced Inflow velocity measured at240 degrees and r/R of 0.70.

276

.02- -0.001

-.01

* .02

4-D

0 90 180 270 380ROTOR POSITION, degress

-2XiLO

.798-

0 le 32 48 64* ORDER RATIO

Figure 134.- Concluded

277

.02 . -0.006

.01-

a .00-

-.01-

-.02'

45-u- W00

ir

z0

0 90 180 270 360ROTOR POSITION, degrees

-2X10.649-

0. .432-W

(n

S .216

.00

.0 16 32 48 64

ORDER RATIO

Figure 135.- Induced inflow velocity measured at

240 degrees and r/R of 0.74.

27-'

.02 -0.002

.01

-00-

-.02.

00

ia ww a:m a:

zoU0

00 90 :180 270 360

ROTOR POSIT ION, degrees

-2XtoB31

I--

co M 5W E.277

000

0 16 32 48 64ORDER RATIO

Figure 135.- Concluded.

279

.02 -0.008

.01

.00

-.01

-. 02 *

LL W00 30

Wa:ma:

z0

0 90 :180 270 360ROTOR POSITION, degrees

-2XiO.411-

x

CrO274-

a L

0

" 137

0 16 32 48 64ORDER RATIO

Figure 136.- Induced Inflow velocity measured at

240 degrees and rIR of 0.78.

280

=-0.001

z.01

-.0±L

-.02

LL W00

crwwcr

0

xOO

00)

01

-W

0 16344-6

C28

.02- -0.007

.01

* .00-

-.01

-. 02 *

30

COO

0 0

0 90 320 270 34

240 O deres and rR ode0.82.

2822

.00-

-.02[

-.0 2 30.

0

0 90 ±80 27036ROTOR POSITION, degrees

-2X1O.646-

a-U .431w0.

215-

.0000 16 32 48 64

ORDER RATIO

Figure 137.- Concluded.

283

-0.007

1.00-

-.01

-.02 I

45 7

DC.)0

0 90 :180 270 360ROTOR POSITION. degrees

-2xio.349-

D

C-) 233-wWa.

0 16 32 48 64ORDER RATIO

Figure 138.- Induced inflow velocity measured at

240 degrees and r/R of 0.86.

284

.02 = -0.001

.00-

-.0:1

-.02

w r

00 90 180 270 360ROTOR POSITION, degrees

-2xio.460-

ccL) .307-

'- 153

.000 tA0 ±6 32 48 64

ORDER RATIO

Figure 138.- Concluded.

285

=-0.005

-.00-

-.02 *

wCr

0

0 90 180 270 360ROTOR POSITION, degrees

-2XiO241

a.

C

.080-

.0000 16 32 48 64

ORDER RATIO

Figure :139.- Induced inflow velocity measured at240 degrees and r/R of 0.90.

286

-.00

-.02 .

45

ccw

0

__ 01

0 90 180 270 360ROTOR MOSITION, degrees

-2x10

0 .226-w

-U.13 -,j

.000 * 10 16 32 48 64

ORDER RATIO

Figure 139.- Concluded.

287

.02.00

.00-

-. 0:1 p

a:

00 90 180 270 360ROTOR POSITION, degrees

-2xi0202-

C.) 1j34

U)

'~.067-

0 16 32 48 64ORDER RATIO

Figure 140.- Induced Inflow velocity measured at

240 degrees and r/A of 0.94.

288

.01 - 0.001

.00

C-4

-.01.

-.02'

457

oc,

zc.0

0 90 180 270 360ROTOR POSITION, degrees

-2xi0

206-

C.) .137wcfl0

.069-

0 1.6 32 48 64ORDER RATIO

Figuire 140.- Concluded.

289

.01.p*

0

0 90 180 270 380ROTOR POSITION, degrees

-2xio.i46-

C. .097-

S .049-

0 16 32 48 64ORDER RATIO

Figure 141.- Induced inflow velocity measured at

240 degrees and r/R of 0.98.

290

.01 X1=0.002

.00-

-.01 p

9 30152

I-2

C. .068-

.034-

0 16 32 48 64ORDER RATIO

FigLre 141.- Concluded.

291

.02-~* -oos0

.00

-3

iO

-63

am -

C) .642-

DW00 M6 32 48 64

ORDER RATIO

Figure 142.- Induced Inflow velocity measured at

240 degrees and rIR of 1.02.

292

.01 =0.003

-3

I-3

C) .445-

.223-

.000 I

0 ±6 32 48 64ORDER RATIO

Figure 142.- Concluded.

293

.p i= Looa

I .00

-.0Oil45

0 90 ±80 270 360ROTOR POSITION, degrees

-3xiO

.759

c-

.- 253

0 16 32 48 64ORDER RATIO

Figure 143.- Induced Inflow velocity measured at

240 degrees and riR of 1.04.

294

.oi ~ =0.003

44

0 s0 iBO 270 30ROTOR POSITION. de~-ees

-3

.424-

0 1 32 48 64ORDER RATIO

Figure ±L43.- Concluded

295

II

I m

-.01

-.02

30

0 ------I ,I

0 90 180 270 30ROTOR POSITION, degrees

-3xLO.839

c-C.)

~4 280-

.0001.* I

0 16 32 48 64ORDER RATIO

Figure 144.- Induced inflow velocity measured at

240 degrees and r/R of 1.10.

296

.0± 1 0.012

-.00

3-2C.27

0 15

.09090 20 8

ROTORDER ATIO ere

-29

.02 ~=-0.002

.00

-.0:1

-.021I*

0 3

0

.541

D

C.C,,

I-

1i80

.00010 16 32 48 64

ORDER RATIO

Figure 146.- Induced inflow velocity measured at

270 degrees and r1A of 0.40.

300

.02 X~=0.002

.oi

.00-

-.0:1

LL W

00

o 90 :180 270 30ROTOR POSITION, degrees

-2xio

.543-

c-Q. .362-

-4 181

.00010 1632 48 64

ORDER RATIO

Figure 146.- Concluded.

301

.02- -0.002

* .00-

-.0

-.02 *

45

0 3

xi

.567-

.

18-

.000......0 16 32 48 64

ORDER RATIO

Figure 147.- Induced inflow velocity mneasured at270 degrees and rIR of 0.50.

302

D2 = 0.00:1

.0±-

V.:44

.00

0 90 ISO 270 380ROTOR POSITION, deqrees

-2xio

cc0

I--0 ~374-wal.

.187

0 :16 32 48 64ORDER RATIO

Figure 147.- Concluded.

303

.02.= -0.003

.00-

-.01

-.02 *

z 0-2

.56

-)

0163486

270 RPITO degrees adrRo .0

304-

=-0.00±M02 -

.01

* .00

-.01

2

w

000 ±0 32 480 364

ROORDERO ATIOders

X305

.02- -0.005

.00-

-.0:1

-.02

00

z 0-2W xiO

0.

0- .01812036

-- 2

0r54384 6

ORERRAI

306

.0 = -0.003

.012

* .00-

-.02

06

z -2

.62

a-2Coi

.6-2

:: 207-

.000 16 32 48 64ORDER RATIO

Figure 149.- Concluded.

307

.02 =-0.003

.01

=L* .00-

-.01

-.02

0 3

CO-)

I-2

Q. .362-w

.000 016 32 48 64ORDER RATIO

Figure 150.- Induced inflow velocity measured at270 degrees and r/A of 0.74.

308

.02 = -0.003

.0

.01-

-.02 I

45-

LL W00Ucc w

0

0 90 i80 270 3160ROTOR POSITION, degrees

-2xi0

.600r

0. .400-wa.

co' .20

200

0 632 48 64

* ORDER RATIO

Figure 150.- Concluded.

309

.02 - -0.004

.01

I .00

-.01

-. 02 I

S30-2

D 15

0 0

I-2~' .184

.55

30.

.02 -0.003

.02

.01

-.02'

0 3

.0

a-2

.00

0 :16 32 48 64ORDER RATIO

Figure 151.- Concluded.

311

J0 -. 0

.00

-.02

452

30

0 90 iSO 270 360ROTOR POSITION, degrees

-2xiO.459-

153

... .......

.O000 16 32 48 64

ORDER RATIO

Figure 152.- Induced Inflow velocity measu.red at270 degrees and r/R of 0.82.

312

.02 -0.003

.02

* .00-

.02

45,-00

0 3

0 D0 812056

z C-20I

I-2

0- 383-wa

000

0 16 32 48 64ORDER RATIO

Figure 152.- Concluded.

313

Di - -0.002

1 L.02

45,-

-0 2 * I

0 90 180 270 360ROTOR POSITION, degrees

-2)do

3W89

X 30

0 :16 32 48 6ORDER RATIO

Figure 153.- Induced Inflow velocity measured at

270 degrees and r/R of 0.86.

314

.02 -0.002

45.

6i

0 90 ±80 270 30ROTOR POSITION, degrees

-2xio

.0000 16 32 48 64

ORDER RATIO

Figure 153.- Concluded.

315

-0.002

Ij0

-.OiL

-.02 *

Co)LL W00C.

S30-2xxio

I

0 P .. 2I5

270 RPITO degrees adrRo .0

316-

.02 - -0.001

45

LL W

0

0 90 180 270 380ROTOR POSITION. degrees

-'2xiO.423-

I-

w

0 16 32 48 64ORDER RATIO

Figure 154.- Concluded.

317

.00-~

-.01

00

0 90 ±80 270 360ROTOR POSITION, degrees

-2,(10.241i

CI

Col

.080-

.000 . I -

0 ie 32 48 64ORDER RATIO

Figure 155.- Induced Inflow velocity measured at270 degrees and r/R of 0.94.

318

.00i

44

0

0 90 iB0 270 380ROTOR POSITION, degrees

-2X1O

323-

D

20-w

108

W6 32 48 64ORDER RATIO

Figure 155.- Concluded.

319

-0.003

00

o 90 180 270 360ROTOR POSITION, degrees

-2xiO.147-

Cro .098-w( 0

.049

.000)0 16 32 48 64

ORDER RATIO4

Figure 15C.- Induced inflow velocity measured at

270 degrees and r/R of 0.98.

320

Y=0.001

45

n o1

0 90 ±80 270 380ROTOR POSITION, degrees

-2

210

C.) 140

.070

.0000 16 32 48 64

ORDER RATIO

Figure 156.- Concluded.

321

.00

0 90 180 270 300ROTOR POSITION. degrees

-2)do

.124-

C-

1 .083-

.041-

.000 * p *. p

0 16 32 48 e4ORDER RATIO

Figure 1.57.- Induced inflow velocity measured at

270 degrees and rIR of 1.02.

322

.02 0.003

4.001

so-

-2

I-2V08 14126

- .042

.0000 16 32 48 64

ORDER RATIO

Figure 157.- Concluded.

323

.01 =-0.003

.00-

.0±

-.02 I

4-2

310

I-2

O .073-w0.

.037-

0 :16 32 48 64ORDER RATIO

Figure 158.- Induced inflow velocity measured at270 degrees and r/R of 1.04.

324

.02 0.003

.01.

.00

0 90 180 270 360ROTOR POSITION, degrees

-2xiLO

J2-

Q .084-

64 .042

.0000 16 32 48 64

ORDER RATIO

Figure 157.- Concluded.

323

=-0.003

I~* .00-

-.01

-.021*p

Ca 45 F

z 30

1 5

0 g0 180 270 360ROTOR POSITION, degrees

-2xiO110

U- .073-

W E

.037-

.000* I * a0 16 32 48 64

ORDER RATIO

Figure 158.- Induced inflow velocity measured at

270 degrees and r/R of 1.04.

324

.0i X- 0.003

44

0

00 90 180 270 360

ROTOR POSITION, degrees

-3xiO.748-

0co

'a 249-

0 16 32 48 64ORDER RATIO

Figure 158.- Concluded.

325

.01. .=-0.003

*-.00-

-0±

-. 02 *

0Q

S50-2a: WOW ±E

O 070~

-- 20X1

.0076

3036

.02 = 0.003

.01

.00

-.01

"75-

LL W00Lz 507a:w

zo

0 90 i80 270 360ROTOR POSITION, degrees

-3xiO

.755

-U .503

Jn

i i

252

.0-jK

.000 I

0 16 32 48 64ORDER RATIO

Figure 15g.- Concluded.

327

.02 = 0.005

.01 i

* .00

.01

-.02 * I , !

L W00C.cncrz 30-a: Wx 15z 0

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

156

Cr

0 104W

Q.w E

I--.. .052

I

.000 , I I , I

0 16 32 48 64ORDER RATIO

Figure 160.- Induced inflow velocity measured at

300 degrees and r/R of 0.20.

328

=0 0.01±

.00

-.01 *

45

00Qz 30a:rw

z Q0 0

0 90 IS0 270 360ROTOR POSIT ION, degrees

-2xio.153-

U .102wCLg

ii .05±

.0000 :16 32 48 6

ORDER RATIO

Figure ±60.- Concluded.

329

.02-= 0.002

.01

* .00-

-.02 I

30

0 90 180 270 360ROTOR POSIT ION, degrees

-2X1.O

.471

x

a:

a.

.157

.0 i6 32486ORDER RATIO

Figure 161.- Induced inflow velocity measured at

300 degrees and r/R of 0.40.

.330

i 0.004

.00-

-.02

45,

LL.W-.0230-

aww

z C0

0 90 180 270 360ROTOR POSITION, degrees

-2xiO.555

0 370

.000

0 16 32 48 64ORDER RATIO

Figure 161.- Concluded.

331

42- 0.001

.02

-.0±

-.02

02 0

0 90180 27U 360ROTOR POSITION. degrees

-2xio

.576-

-1' 84-

0U,W E

* .192

.0000 16 32 48 64ORDER RATIO

Figure 162.- Induced Inflow velocity measured at300 degrees and r/R of 0.50.

3 32

.02- 0.002

.01

-.02

4.5

co

00

0 0

COiO050

I--2

0 3333

J4 = 0.001

.02

.00±

=l

-.0"

-.02S

45

00a:

S 150

0 90 180 270 360ROTOR POSITION, degrees

-2xlO

.387-

I-C.) 258-a.

129

.0001 . . _ _.. ..

0 16 32 48 64ORDER RATIO

Figure 163.- Induced inflow velocity measured at

300 degrees and r/R of 0.60.

334

b2 -0.002

.02

.-01

. 0

.0w

a:

0 90 180 270 360ROTOR POSITION, degrees

-2xi0

U 257-

~ 128

.0000 16 32 48 64

* ORDER RATIO

Figure 163.- Concluded.

335

.01. -0.000

404

0

0 g0 1.80 270 380ROTOR POSITION, degrees

-2xiO2W62

0 .175

.087

0 16 32 48 64ORDER RATIO

Figure 164.- Induced inflow velocity measured at300 degrees and r/R of 0.70.

336

.02 = -0.003

.01-

.00

-.01

0

S30-2

I

0

I-2

-j9

a-

ORE RATI

Fiur 164. Concluded

337

.02 . -0.00J.

.01

.00

-.01---'

45.-z(.)

0 0

0 90 18 206

ROTOR POSITION, degrees-2

X1O.218-

o) 145a-

Ul)

.073

.000

0 16 32 48 6ORDER RATIO

Figure 165.- Induced Inflow velocity measured at

300 degrees and r/A of 0.74.

338

.02 -0.005

.012

.00-

-.01

cr wwaCm CC

zc-0

0 90 :180 270 360ROTOR POSITION, degrees

-2xiO

2W66

C. 177wQ.

S .089-

0 16 32 48 64ORDER RATIO

Figure 165.- Concluded.

339

.01 - -0.002

Ii.00

.02

0 3

0

I-2.150

-10

aa -

.000 *0 16 32 48 64ORDER RATIO

Figure 166.- Induced inflow velocity measured at300 degrees and r/R of 0.78.

340

.02 -0.007

1z .01

.00

-. 01 *

45-

zC-)0U

z 0-2

w W0zCoin

0

-- 2

I

.000-

0 16 32 48 64ORDER RATIO

Figure 166.- Concluded.

341

LI i= -0.002Dij

-.011II

45

LL W00Qz :30Wrwx" 0 15D C.)Z L

0

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

.135

I--0 .0900.

wE-'-4 .045I S .

.0000 16 32 48 64

ORDER RATIO

Figure 167.- Inducea inflow velocity measured at

300 degrees and r/R of 0.82.

342

.02-X -0.007

.0

-.Oi

000

-w

0 2

0 90 i8O 270 360ROTOR POSITION, degrees

-2xi0

MO-

0 .207-w

.103

0 16 32 48 64ORDER RATIO

Figure 167.- Concluded.

343

.01 - 0.002

I.00-

-.0±

0.0

Cl 0-9 8 7 6

2-2

xiO262-

C) 175

E0.

.087

0i6 32 48 64ORDER RATIO

Figure £68.- Induced inflow velocity measured at300 degrees and r/R of 0.86.

344

.02 = -0.007

.011

.00

-.01 *

45-LL W00

z 30cr ww cr

D 15

0

090 180 270 360ROTOR POSITION, degrees

-2

0i

wa.

OwJ

016 32 48 64ORDER RATIO

Figure 168.- Concluded.

345

021 -0.001

.00

-.0±L

-. 02 p

zc-)0.

ROO POITON dere

a:-2W a:O

248a

x L

I--2

L) -165-WC',

- .083

0 16 32 48 64ORDER RATIO

Figure 169.- Induced Inflow velocity measured at300 degrees and r/R of 0.90.

346

.02 - -0.008

.01

Ic00

-.01

45-LWW

00 30

wa:z Cc

0 0

0 90 180 270 360ROTOR POSITION degrees

-2xlO

M4

C.) 209wa.

a -

0 16 32 48 64ORDER RATIO

Flgure 169.- Concluded.

347

-0.000

.00-

.01

-.021

45-LL W00

z 30MWQma:

' ~15z 0

0

O 90 180 270 360ROTOR POSITION, degrees

-2xiO268-

q:0 -179-

W E

1-4 .089

0 16 32 48 64ORDER RATIO

Figure 170.- Induced inflow velocity measured at300 degrees and r/R of 0.94.

3-18

.02 -0.009

.01-

Z

.00

-.01-

-. 02'II*

45-zo00

S30-2

w c

0

-- 2

.330

D

0.0

10 163 86

ORDER RATIO

Figure 170.- Concluded.

:349

.01 =-0.002

-.01

-.02 , ,

451

010 90 180 270 360

ROTOR POSITION, degrees

-2xIO.210

2I-

U 140 -

Cl)wE

'~ .070J

.000

0 16 32 48 64ORDER RATIO

Figure 171.- Induced inflow velocity measured at300 degrees and r/R of 0.98.

317,0

.02-~ -0.009

.01

.00

-.0i

tL W00

a:ww cc

0

0 90 :180 270 360ROTOR POSITION, degrees

-2x±O.3±5

0 .2±0w(-

:1 .05

.000,0 :16 32 48 64

ORDER RATIO

Figure 171.- Concluded.

351

.O ! = -0.002

.01o .00

LW

=L

-. 01

-.02(n 45

O0 .

D 215

o

000 90 180 270 360

ROTOR POSITION, degrees

-2

- . 172

M15

0 16 32 48 64

ORDER RAT IO

Figure 172.- Induced inflow velocity measured at300 degrees and rR of 1.02.

352

.02 -0.008

.021

.00

LL W00

arwwaC

zC.)0

0 90 i80 270 360ROTOR POSITION degrees

-2xiO289-

D

0- 193w(L

'a .096-

.000-0 ie 32 48 64

ORDER RATIO

Figure 172.- Concluded.

3,73

IL -0.002

4-m

30

0 90 ISO 270 360ROTOR POSITION, degrees

-2X1O

186

C.) .124

"~.062

0il 32 48 64ORDER RATIO

Figure 173.- Induced inflow velocity measured at

300 degrees and r/R of 1.04.

354

.02- -0.006

.02

0

00

0

0 90 180 270 360ROTOR POSITION, degrees

-2xiO

.323-

~ 108

0 iO32 48 64ORDER RATIO

Figure 173.- Concluded.

.0± ~-0.004

.00-

-.01

45-20io±30

1-

0 0

300 O deres and rR dfegrees

3562

=-0.003

.00-

15-2

252-

U* -68-

.084

.000 * I *

0 1.6 32 48 64ORDER RATIO

Figu.-e 174.- Concluded.

357

42 = 0.010.02 i

.01

IZ

-.021

.02 , , *

45-

0

0 9o 180 270 360ROTOR POSITION, degrees

-2x1O

267-

U0 .178

.089-

.0001-

0 16 32 48 64ORDER RATIO

Figure 175.- Induced inflow velocity measured at

330 degrees and r/R of 0.20.

358

.02- 0.010

.02

45

(a

0CJ

-00

00

wixir

IDIa:

0

.5-2.4

.0-00 16320456

.1359

.02 p. 0.007

.01±

.0±

-.021

45,

00C.

0 0

.)3

-)

000-

01

A39J

60)

TY= 0.0m±

* .00

LW0 Q

wr

00 g0 1.80 270 360

ROTOR POSITION, degrees

-2.1.26

U. .084-waL

W r

' .042-

-000

016 32 48 64ORDER RATIO

Figure 176.- Concluded.

.02- 0.008

.01

.00

-.021

457

CI)W

Wa:

0

0 90 180 270 360ROTOR POSITION, degrees

-2xio

.393-

C- 262-Wa.0f)W E

0 16 32 48 64ORDER RATIO

Figure 177.- Induced inf low velocity measured at330 degrees and r/R of 0.50.

362

.01

-.001

45,IL W00U

z 307arww crx D 15z O0C.

0

0 90 180 270 360ROTOR POSITION, degrees

-2X1O

2185-

O257-w

w E

.128Q.

.0 16 32 48 64ORDER RATIO

Figure 177.- Concluded.

363

0.009.02 -

0.0

040

0

0 16 320 480 64

330 O dere SION ndegrof e.60

3642

.02-X -0.002

.01-

.00

-.01

45-

LL W0 0z 307tw x D :15

D0

0 90 180 270 360ROTOR POSITION, degrees

-2X1O.429-

crI--

w

-. .143-Q.

.000-0 16 32 48 64

ORDER RATIO

Figure 178.- Concluded.

365

.02- I .i

.01

.00 A-.01-

-.021II

0

3 30

ccWc-

0

0

I-2

'-) .220-

-J

a.0

016 32 48 64ORDER RATIO

Figure 179.- Induced inf low velocity measured at

330 degrees and r/R of 0.70.

366

.02 -0.004

M02

.00-

-.01 *

45LL W00Qz 30a: ww cc

15

0

0 90 180 270 3W0ROTOR POSITION degrees

-2X1O.220-

Q .146

wE

S .073

-000

0 16 32 48 64ORDER RATIO

Figure :179.- Concluded.

.02- 0.008

.00

-.021

45

0z 30

M a:x D 15

0

0 90 180 270 360ROTOR POSIT ION, degrees

-2xiO

283-

cc

.

a

~4.094

0 16 32 48 64ORDER RATIO

Figure 180.- Induced Inflow velocity measured at

330 degrees and r/R of 0.74.

368

.02 -0.005

.01

.00-

45

00Uz 30a:rw

w a::3 15

0

0 90180 270 360ROTOR POSITION, degrees

-2x(i0

1t97

0 132wa-(0 U

0

.00-

0 16 32 48 64ORDER RATIO

Figure 180.- Concluded.

:369

.02- 1 0.004

.01

.00-

-.01

-.02 *

LW00

0 3

0 901027 6ROO POIIOdere

Ca -2

0 012

a-2

cc

a-

1 4

.000. *

0 1L6 32 48 64ORDER RATIO

Figure 181.- Induced inf low velocity measured at330 degrees and r/R of 0.78.

370

D i = -0.004

1 .00

-.01

60-

LL W00

z 40ct wmr

z ) 20 AA0 2zo0

0 90 180 270 360ROTOR POSITION, degrees

-2,,10

-15i

xrI-0 .101hilwa.

wED

' .050

00"

0 16 32 48 64ORDER RATIO

Figure 181.- Concluded.

371

0.004

.01

45-

LL W00C-

W cc

z 00

00 90 180 270 360

ROTOR POSITION, degrees-2

X1O.113

I--0) .075-aa

.03-J0-

.000.

0 16 32 48 64ORDER RATIO

Figure 182.- Induced inflow velocity measured at330 degrees and nAR of 0.82.

372

=OL -0.005

.00-

.01

-.02'

45-

z 30-wca:m a:

15-z0

0'I0 90 180 270 360

ROTOR POSITION, degrees

X10J194

:3

a(f 129wEQ-

I' .065

.000

0 16 32 48 64ORDER RATIO

Figure 182.- Concluded.

3 73

.02.= 0.007

.02-

-.01

j~-.03

4-.0

0 )

0: 901027!6

:5-2

.308

0 00 010 7 6

ROO OIIN ere

O .205-U

-4 .103

0 16 32 48 64ORDER RATIO

Figure 183.- Induced inflow velocity measured at

330 degrees and r/R of 0.86.

374

Xj=-0.007

.01-

-.001

-.0U

z -1

-2x1O

.349-

LO 233-w

0 LD

-

.000,0 16 32 48 64

ORDER RATIO

Figure 183.- Concluded.

375

.02- 0.0

.00-

-.02

0

.1

090 ±80 270 360ROTOR POSITION, degrees

-2X1.O.433-

ccC.) .2W8

.44

0 1.6 32 48 64ORDER RATIO

Figure 184.- Induced Inflow velocity measLred at

330 degrees and r/R of 0.90.

376

.02 -0.008

.00-

-4O

-. 021**

0 3

0 9(:802056

.49

I--2

Q3 329-w

.0000 :16 32 48 64

ORDER RATIO

Figure 184.- Concluded.

377

.02-= 0.003

-. M

-.02

45

~30iiis0

0 90 i.80 270 350ROTOR POSITION, degrees

-2xi0.409-

.'272-

13e11414

0 i6 32 48 64ORDER RATIO

Figure :185.- Induced Inflow velocity measured at

330 degrees and r/R of 0.94.

378

.02 = -0.01io

.002

1z

45-

-0

45

0o 90 i80 270 360

ROTOR POSITION, degrees

-2xiLO

Q .A20

M-

0 ie 32 48 64ORDER RATIO

Figure i85.- Concluded.

379

.02-= 0.007

.00- I

-Di

I.02

4-D

0

3-2

IM

L3.

00 16 320 481640

ROO30TIN degrees adrRo .8

3802

.02 -0.011

.021

.00-

-.0±L

-.02 *

45-

S30-2

wD - 5

0

ROORDER ATIOere

Fiue 18.2onldd

x381

.02 0.004

.0:1I

.00

-.01

-. 02 I I I *

30,

z 200rw

x D) 10-

0

0 90 180 270 360ROTOR POSITION, degrees

-2x1.0

.507

I

I-

0 23

,--

0 ±6 32 48 64ORDER RATIO0

Figure i87.- Induced Inflow v'iocity measured at

330 degrees and r/R of 1.02.

382

.02- -0.01±

.02

-.02

45-co,

LL W00U

z 30-a:w

0

0 90 ±80 270 360ROTOR POSIT ION, degrees

-2xio

U .375-wa.w E

000

0 16 32 48 64ORDiER RATIO

Figure 187.- Concluded.

3S3

b2 - 0.004

.01

11 .00-

S -.01

-.02-

-.03 *

45-LL W00

a

0

0 90 :180 270 360ROTOR POSITION, degrees

-2

xi

crI--0 .372-wa.

.186

.0000 ±6 32 48 64

ORDER RATIO

Figure :188.- Induced inflow velocity measured at

330 degrees and r/R of 1.04.

384

.02 -0.012

.0:12

.001

-.00i

-.02

402 7

LL WLi U

w a:

0

0 90 ISO 270 360ROTOR POSITION, degrees

-2xiO

.560-

CrU, 374-w

03c

- .187--jC.

.0004860 16 32484

ORDER RATIO

t Figure 188.- Concluded.

385

.00

-.01

-.02 *

is

go I0S18 27030ROTOR POSITION, degrees

-2xiLO

371

1185

016 32 48 64ORDER RATIO

Figure 18,9.- Induced lnflow velocity measured at330 degrees and r/R of 1.10.

386

.02- -0.012

.012

.01

-.02

45)

00C.a: 11

0

0 90 180 270 360ROTOR POSITION, degrees

-2x10

.A94

a:U ~329-wa-

0

165a.

.000-0 16 32 48 64

ORDER RATIO

Figure 189.- Concluded.

387

ISA Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA T' -101599AVSCOM TM-89-B-002

4. Title and Subtitle 5. Report Date

Inflow Measurements Made With a Laser Velocimeter on a April 1989Helicopter Model in Forward Flight, Volume VII:Rectangular Planforn Blades at an Advance Ratio of 0.40 6 Performing Organization Code

7 Author(s) 8. Performing Organization Report No.

Danny R. Hoad, Susan L. Althoff, Joe W. Elliott, andRichard H. Sailey

10. Work Unit No.

9. Performing Organization Name and Address 505-61-51-10

Aerostructures Directorate 11. Contract or Grant No.

USAARTA-AVSCC,1Langley Research CenterH-amton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Technical MemorandumWashington, DC 20546-0001 and 14 Sponsoring Agency CodeUS Army Aviation Systems ComnandSt. Louis, INK) 63120-1798

15. Supplementary Notes

Danny R. Hoad, Susan L. Althoff, and Joe W. Elliott: Aerostructures Directorate,USAARTA-AVSC1, Langley Research Center, Hampton, VARichard H. Sailey: Planning Research Corporation, Hampton, VA

16. Abstract

An experimental investigation was conducted in the 14- by 22-Foot SubsonicTunnel at the NASA Langley Research Center to measure the inflow into a scale modelhelicopter rotor in forward flight (It = 0.40). The measurements were made with -Itwo-component Laser Velocimeter (LV) one chord above the plane formed by i'epath of the rotor tips (tip-path-plane). A conditional sampling technique w, used todetermine the position of the rotor at the time that each velocity measure ,.nt wasmade so that the azimuthal fluctuations in velocity could be determined.Measurements were made at a total of 178 separate locations in order tc clearly definethe inflow character.

17 Key Words (Suggested by Author(s)) 18. Distribution Stai-rnent

Rotor model Unclas iied - Unlimite 9cInflow Subject Cat eFrn - 02Laser Velocirnetry

19 Security Classif t ,'.. 20 Securrv Classf (of this age) 'I No of pages 22 Pr,ce

Unclass i fied I Un C I i f i -id .88 Al 7

NASA FORM 16S OCT 8 6 G N. %4f ir piq,,4jN0 or,;o . 1 9 9 9 6 2 9 - 5 9 * d