Natural Language Processing with Deep Learning CS224N/Ling284 · 2019-01-01 · Natural Language...

Post on 22-May-2020

7 views 0 download

transcript

Natural Language Processing with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 14: Tree Recursive Neural Networks and Constituency Parsing

LecturePlan

1.  Mo%va%on:Composi%onalityandRecursion2.  Structurepredic%onwithsimpleTreeRNN:Parsing3.  Researchhighlight:DeepReinforcementLearningforDialogue

Genera9on4.  Backpropaga%onthroughStructure5.  Morecomplexunits

Reminders/comments:LearnuponGPUs,Azure,DockerAss4:Getsomethingworking,usingaGPUformilestoneFinalprojectdiscussions�comemeetwithus!

1.ThespectrumoflanguageinCS

3

Seman9cinterpreta9onoflanguage–Notjustwordvectors

Howcanweknowwhenlargerunitsaresimilarinmeaning?

•  Thesnowboarderisleapingoveramogul

•  Apersononasnowboardjumpsintotheair

Peopleinterpretthemeaningoflargertextunits–en%%es,descrip%veterms,facts,arguments,stories–byseman9ccomposi9onofsmallerelements

Compositionality

Language understanding – & Artificial Intelligence – requires being able to understand bigger

things from knowing about smaller parts

8

Arelanguagesrecursive?

•  Cogni%velysomewhatdebatable•  But:recursionisnaturalfordescribinglanguage•  [Themanfrom[thecompanythatyouspokewithabout[the

project]yesterday]]•  nounphrasecontaininganounphrasecontaininganounphrase•  Argumentsfornow:1)Helpfulindisambigua%on:

Isrecursionuseful?

2)Helpfulforsometaskstorefertospecificphrases:•  JohnandJanewenttoabigfes%val.Theyenjoyedthetripandthemusicthere.

•  “they”:JohnandJane•  “thetrip”:wenttoabigfes%val•  “there”:bigfes%val

3)Worksbe^erforsometaskstousegramma%caltreestructure•  It’sapowerfulpriorforlanguagestructure

BuildingonWordVectorSpaceModels

11

x2

x1012345678910

5

4

3

2

1Monday

92

Tuesday 9.51.5

Bymappingthemintothesamevectorspace!

15

1.14

thecountryofmybirththeplacewhereIwasborn

Howcanwerepresentthemeaningoflongerphrases?

France 22.5

Germany 13

Howshouldwemapphrasesintoavectorspace?

thecountryofmybirth

0.40.3

2.33.6

44.5

77

2.13.3

2.53.8

5.56.1

13.5

15

Useprincipleofcomposi%onalityThemeaning(vector)ofasentenceisdeterminedby(1) themeaningsofitswordsand(2) therulesthatcombinethem.

Modelsinthissec%oncanjointlylearnparsetreesandcomposi%onalvectorrepresenta%ons

x2

x1012345678910

5

4

3

2

1

thecountryofmybirth

theplacewhereIwasborn

Monday

Tuesday

FranceGermany

12

Cons9tuencySentenceParsing:Whatwewant

91

53

85

91

43

NPNP

PP

S

71

VP

Thecatsatonthemat.13

LearnStructureandRepresenta9on

NPNP

PP

S

VP

52 3

3

83

54

73

Thecatsatonthemat.

91

53

85

91

43

71

14

Recursivevs.recurrentneuralnetworks

3/2/17

thecountryofmybirth

0.40.3

2.33.6

44.5

77

2.13.3

2.53.8

5.56.1

13.5

15

thecountryofmybirth

0.40.3

2.33.6

44.5

77

2.13.3

4.53.8

5.56.1

13.5

15

2.53.8

Recursivevs.recurrentneuralnetworks

3/2/17RichardSocher

•  Recursiveneuralnetsrequireaparsertogettreestructure

•  Recurrentneuralnetscannotcapturephraseswithoutprefixcontextandohencapturetoomuchoflastwordsinfinalvector

thecountryofmybirth

0.40.3

2.33.6

44.5

77

2.13.3

2.53.8

5.56.1

13.5

15

thecountryofmybirth

0.40.3

2.33.6

44.5

77

2.13.3

4.53.8

5.56.1

13.5

15

2.53.8

FromRNNstoCNNs

3/2/17RichardSocher

•  RNN:Getcomposi%onalvectorsforgramma%calphrasesonly

•  CNN:Computesvectorsforeverypossiblephrase•  Example:“thecountryofmybirth”computesvectorsfor:

•  thecountry,countryof,ofmy,mybirth,thecountryof,countryofmy,ofmybirth,thecountryofmy,countryofmybirth

•  Regardlessofwhethereachisgramma%cal–manydon’tmakesense

•  Don’tneedparser•  Butmaybenotverylinguis%callyorcogni%velyplausible

Rela9onshipbetweenRNNsandCNNs

•  CNN RNN

3/2/17RichardSocher

Rela9onshipbetweenRNNsandCNNs

•  CNN RNN

peopletherespeakslowlypeopletherespeakslowly

3/2/17RichardSocher

2.RecursiveNeuralNetworksforStructurePredic9on

onthemat.

91

43

33

83

85

33

Neural Network

83

1.3

Inputs:twocandidatechildren’srepresenta%onsOutputs:1.  Theseman%crepresenta%onifthetwonodesaremerged.2.  Scoreofhowplausiblethenewnodewouldbe.

85

20

RecursiveNeuralNetworkDefini9on

score=UTp

p=tanh(W+b),

SameWparametersatallnodesofthetree

85

33

Neural Network

83

1.3score= =parent

c1c2

c1c2

21

ParsingasentencewithanRNN

Neural Network

0.120

Neural Network

0.410

Neural Network

2.333

91

53

85

91

43

71

Neural Network

3.152

Neural Network

0.301

Thecatsatonthemat.

22

Parsingasentence

91

53

52

Neural Network

1.121

Neural Network

0.120

Neural Network

0.410

Neural Network

2.333

53

85

91

43

71

23

Thecatsatonthemat.

Parsingasentence

52

Neural Network

1.121

Neural Network

0.120

33

Neural Network

3.683

91

5353

85

91

43

71

24

Thecatsatonthemat.

Parsingasentence

52

33

83

54

73

91

5353

85

91

43

71

25Thecatsatonthemat.

Max-MarginFramework-Details

•  Thescoreofatreeiscomputedbythesumoftheparsingdecisionscoresateachnode:

•  xissentence;yisparsetree

85

33

RNN

831.3

26

Max-MarginFramework-Details

•  Similartomax-marginparsing(Taskaretal.2004),asupervisedmax-marginobjec%ve

•  Thelosspenalizesallincorrectdecisions

•  StructuresearchforA(x)wasgreedy(joinbestnodeseach%me)•  Instead:Beamsearchwithchart

27

Backpropaga9onThroughStructure

IntroducedbyGoller&Küchler(1996)Principallythesameasgeneralbackpropaga%onThreedifferencesresul%ngfromtherecursionandtreestructure:

1.  Sumderiva%vesofWfromallnodes(likeRNN)2.  Splitderiva%vesateachnode(fortree)3.  Adderrormessagesfromparent+nodeitself

28

The second derivative in eq. 28 for output units is simply

@a

(nl

)i

@W

(nl

�1)ij

=@

@W

(nl

�1)ij

z

(nl

)i

=@

@W

(nl

�1)ij

⇣W

(nl

�1)i· a

(nl

�1)⌘= a

(nl

�1)j

. (46)

We adopt standard notation and introduce the error � related to an output unit:

@E

n

@W

(nl

�1)ij

= (yi

� t

i

)a(nl

�1)j

= �

(nl

)i

a

(nl

�1)j

. (47)

So far, we only computed errors for output units, now we will derive �’s for normal hidden units andshow how these errors are backpropagated to compute weight derivatives of lower levels. We will start withsecond to top layer weights from which a generalization to arbitrarily deep layers will become obvious.Similar to eq. 28, we start with the error derivative:

@E

@W

(nl

�2)ij

=X

n

@E

n

@a

(nl

)| {z }�

(nl

)

@a

(nl

)

@W

(nl

�2)ij

+ �W

(nl

�2)ji

. (48)

Now,

(�(nl

))T@a

(nl

)

@W

(nl

�2)ij

= (�(nl

))T@z

(nl

)

@W

(nl

�2)ij

(49)

= (�(nl

))T@

@W

(nl

�2)ij

W

(nl

�1)a

(nl

�1) (50)

= (�(nl

))T@

@W

(nl

�2)ij

W

(nl

�1)·i a

(nl

�1)i

(51)

= (�(nl

))TW (nl

�1)·i

@

@W

(nl

�2)ij

a

(nl

�1)i

(52)

= (�(nl

))TW (nl

�1)·i

@

@W

(nl

�2)ij

f(z(nl

�1)i

) (53)

= (�(nl

))TW (nl

�1)·i

@

@W

(nl

�2)ij

f(W (nl

�2)i· a

(nl

�2)) (54)

= (�(nl

))TW (nl

�1)·i f

0(z(nl

�1)i

)a(nl

�2)j

(55)

=⇣(�(nl

))TW (nl

�1)·i

⌘f

0(z(nl

�1)i

)a(nl

�2)j

(56)

=

0

@s

l+1X

j=1

W

(nl

�1)ji

(nl

)j

)

1

Af

0(z(nl

�1)i

)

| {z }

a

(nl

�2)j

(57)

= �

(nl

�1)i

a

(nl

�2)j

(58)

where we used in the first line that the top layer is linear. This is a very detailed account of essentiallyjust the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamardproduct �):

(l) =⇣(W (l))T �(l+1)

⌘� f 0(z(l)), (59)

7

where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get thehidden layer backprop derivatives:

@

@W

(l)ij

E

R

= a

(l)j

(l+1)i

+ �W

(l)ij

(60)

(61)

Which in one simplified vector notation becomes:

@

@W

(l)E

R

= �

(l+1)(a(l))T + �W

(l). (62)

In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and outputactivations using eq. 18.

2. Evaluate �

(nl

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimizationprocedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better whenusing mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of thesame W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’sfrom a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite deMontreal, 2007.

8

BTS:1)Sumderiva9vesofallnodes

Youcanactuallyassumeit’sadifferentWateachnodeIntui%onviaexample:Ifwetakeseparatederiva%vesofeachoccurrence,wegetsame:

29

BTS:2)Splitderiva9vesateachnode

Duringforwardprop,theparentiscomputedusing2children

Hence,theerrorsneedtobecomputedwrteachofthem:

whereeachchild’serrorisn-dimensional

85

33

83

c1p=tanh(W+b)c1

c2c2

85

33

83

c1 c2

30

BTS:3)Adderrormessages

•  Ateachnode:• Whatcameup(fprop)mustcomedown(bprop)•  Totalerrormessages=errormessagesfromparent+errormessagefromownscore

3/2/17RichardSocherLecture1,Slide31

85

33

83

c1 c2

parentscore

BTSPythonCode:forwardProp

3/2/17RichardSocherLecture1,Slide32

BTSPythonCode:backProp

3/2/17RichardSocherLecture1,Slide33

The second derivative in eq. 28 for output units is simply

@a

(nl

)i

@W

(nl

�1)ij

=@

@W

(nl

�1)ij

z

(nl

)i

=@

@W

(nl

�1)ij

⇣W

(nl

�1)i· a

(nl

�1)⌘= a

(nl

�1)j

. (46)

We adopt standard notation and introduce the error � related to an output unit:

@E

n

@W

(nl

�1)ij

= (yi

� t

i

)a(nl

�1)j

= �

(nl

)i

a

(nl

�1)j

. (47)

So far, we only computed errors for output units, now we will derive �’s for normal hidden units andshow how these errors are backpropagated to compute weight derivatives of lower levels. We will start withsecond to top layer weights from which a generalization to arbitrarily deep layers will become obvious.Similar to eq. 28, we start with the error derivative:

@E

@W

(nl

�2)ij

=X

n

@E

n

@a

(nl

)| {z }�

(nl

)

@a

(nl

)

@W

(nl

�2)ij

+ �W

(nl

�2)ji

. (48)

Now,

(�(nl

))T@a

(nl

)

@W

(nl

�2)ij

= (�(nl

))T@z

(nl

)

@W

(nl

�2)ij

(49)

= (�(nl

))T@

@W

(nl

�2)ij

W

(nl

�1)a

(nl

�1) (50)

= (�(nl

))T@

@W

(nl

�2)ij

W

(nl

�1)·i a

(nl

�1)i

(51)

= (�(nl

))TW (nl

�1)·i

@

@W

(nl

�2)ij

a

(nl

�1)i

(52)

= (�(nl

))TW (nl

�1)·i

@

@W

(nl

�2)ij

f(z(nl

�1)i

) (53)

= (�(nl

))TW (nl

�1)·i

@

@W

(nl

�2)ij

f(W (nl

�2)i· a

(nl

�2)) (54)

= (�(nl

))TW (nl

�1)·i f

0(z(nl

�1)i

)a(nl

�2)j

(55)

=⇣(�(nl

))TW (nl

�1)·i

⌘f

0(z(nl

�1)i

)a(nl

�2)j

(56)

=

0

@s

l+1X

j=1

W

(nl

�1)ji

(nl

)j

)

1

Af

0(z(nl

�1)i

)

| {z }

a

(nl

�2)j

(57)

= �

(nl

�1)i

a

(nl

�2)j

(58)

where we used in the first line that the top layer is linear. This is a very detailed account of essentiallyjust the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamardproduct �):

(l) =⇣(W (l))T �(l+1)

⌘� f 0(z(l)), (59)

7

where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get thehidden layer backprop derivatives:

@

@W

(l)ij

E

R

= a

(l)j

(l+1)i

+ �W

(l)ij

(60)

(61)

Which in one simplified vector notation becomes:

@

@W

(l)E

R

= �

(l+1)(a(l))T + �W

(l). (62)

In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and outputactivations using eq. 18.

2. Evaluate �

(nl

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimizationprocedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better whenusing mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of thesame W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’sfrom a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite deMontreal, 2007.

8

BTS:Op9miza9on

•  Asbefore,wecanplugthegradientsintoastandardoff-the-shelfL-BFGSop%mizerorSGD

•  BestresultswithAdaGrad(Duchietal,2011):

•  Fornon-con%nuousobjec%veusesubgradientmethod(Ratliffetal.2007)

34

Deep Reinforcement Learning for Dialogue Generation Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao and Dan Jurafsky

Seq2Seq for Dialogue

Encode previous message(s) into vector

How are you

I

_

am

I

fine

am

Decode vector into response

Seq2Seq for Dialogue

Encode previous message(s) into vector

How are you

I

_

am

I

fine

am

Decode vector into response

Train by maximizing

p(response|input)

where the response is produced by a human

Problems with Seq2Seq

How old are you?

Problems with Seq2Seq

How old are you?

16?

I’m 16

Problems with Seq2Seq

How old are you?

16?

I’m 16

I don’t know what you’re talking about

You don’t know what you’re saying

I don’t know what you’re talking about

You don’t know what you’re saying

Problems with Seq2Seq

How old are you?

16?

I’m 16

I don’t know what you’re talking about

You don’t know what you’re saying

I don’t know what you’re talking about

You don’t know what you’re saying

reasonable, but unhelpful

generic

probable response != good response

What is a good response?

•  Reasonable p(response|input) is high according to seq2seq model

•  Nonrepetitive similarity between response and previous messages is low

•  Easy to answer p(“i don’t know”|response) is low

What is a good response?

•  Reasonable p(response|input) is high according to seq2seq model

•  Nonrepetitive similarity between response and previous messages is low

•  Easy to answer p(“i don’t know”|response) is low

Scoring function: R(response) = reasonable_score + nonrepetitive_score + easy_to_answer_score

Reinforcement Learning

Learn from rewards instead of from examples

1. Encode input into a vector

How are you

Reinforcement Learning

Learn from rewards instead of from examples

2. Have the system generate a response

How are you

I

_

don’t

I

know

don’t

Reinforcement Learning

3. Receive reward R(response)

- Train system to maximize reward

Learn from rewards instead of from examples

R = -5 How are you

I

_

don’t

I

know

don’t

Quantitative Results

Qualitative Results

How old are you?

I thought you were 12

I’m 16. Why are you asking?

What made you think so?

Qualitative Results

How old are you?

I thought you were 12

I’m 16. Why are you asking?

What made you think so?

You don’t know what you’re saying

I don’t know what you’re talking about

You don’t know what you’re saying

Conclusion

•  Reinforcement learning useful when we want our model to do more than produce a probable human label

•  Many more application of RL to NLP!

Information extraction, question answering, task-oriented dialogue, coreference resolution, and more

Discussion:SimpleRNN•  DecentresultswithsinglematrixTreeRNN

•  SingleweightmatrixTreeRNNcouldcapturesomephenomenabutnotadequateformorecomplex,higherordercomposi%onandparsinglongsentences

•  Thereisnorealinterac%onbetweentheinputwords

•  Thecomposi%onfunc%onisthesameforallsyntac%ccategories,punctua%on,etc. W

c1 c2

pWscore s

Version2:Syntac9cally-Un9edRNN

•  AsymbolicContext-FreeGrammar(CFG)backboneisadequateforbasicsyntac%cstructure

•  Weusethediscretesyntac%ccategoriesofthechildrentochoosethecomposi%onmatrix

•  ATreeRNNcandobe^erwithdifferentcomposi%onmatrixfordifferentsyntac%cenvironments

•  Theresultgivesusabe^erseman%cs

Composi9onalVectorGrammars

•  Problem:Speed.Everycandidatescoreinbeamsearchneedsamatrix-vectorproduct.

•  Solu%on:Computescoreonlyforasubsetoftreescomingfromasimpler,fastermodel(PCFG)• Prunesveryunlikelycandidatesforspeed• Providescoarsesyntac%ccategoriesofthechildrenforeachbeamcandidate

•  Composi%onalVectorGrammar=PCFG+TreeRNN

Details:Composi9onalVectorGrammar

•  Scoresateachnodecomputedbycombina%onofPCFGandSU-RNN:

•  Interpreta%on:Factoringdiscreteandcon%nuousparsinginonemodel:

•  Socheretal.(2013)

Relatedworkforrecursiveneuralnetworks

Pollack(1990):Recursiveauto-associa%vememoriesPreviousRecursiveNeuralNetworksworkbyGoller&Küchler(1996),Costaetal.(2003)assumedfixedtreestructureandusedonehotvectors.Hinton(1990)andBo^ou(2011):Relatedideasaboutrecursivemodelsandrecursiveoperatorsassmoothversionsoflogicopera%ons

56

RelatedWorkforparsing

•  Resul%ngCVGParserisrelatedtopreviousworkthatextendsPCFGparsers

•  KleinandManning(2003a):manualfeatureengineering•  Petrovetal.(2006):learningalgorithmthatsplitsandmerges

syntac%ccategories•  Lexicalizedparsers(Collins,2003;Charniak,2000):describeeach

categorywithalexicalitem•  HallandKlein(2012)combineseveralsuchannota%onschemesina

factoredparser.•  CVGsextendtheseideasfromdiscreterepresenta%onstoricher

con%nuousones

Experiments•  StandardWSJsplit,labeledF1•  BasedonsimplePCFGwithfewerstates•  Fastpruningofsearchspace,fewmatrix-vectorproducts•  3.8%higherF1,20%fasterthanStanfordfactoredparser

Parser Test,AllSentences

StanfordPCFG,(KleinandManning,2003a) 85.5

StanfordFactored(KleinandManning,2003b) 86.6

FactoredPCFGs(HallandKlein,2012) 89.4

Collins(Collins,1997) 87.7

SSN(Henderson,2004) 89.4

BerkeleyParser(PetrovandKlein,2007) 90.1

CVG(RNN)(Socheretal.,ACL2013) 85.0

CVG(SU-RNN)(Socheretal.,ACL2013) 90.4

Charniak-SelfTrained(McCloskyetal.2006) 91.0

Charniak-SelfTrained-ReRanked(McCloskyetal.2006) 92.1

SU-RNN/CVG[Socher,Bauer,Manning,Ng2013]

Learnssohno%onofheadwordsIni%aliza%on:

NP-CC

NP-PP PP-NP

PRP$-NP

SU-RNN/CVG[Socher,Bauer,Manning,Ng2013]

ADJP-NP

ADVP-ADJP

JJ-NP

DT-NP

Analysisofresul9ngvectorrepresenta9ons

Allthefiguresareadjustedforseasonalvaria%ons1.Allthenumbersareadjustedforseasonalfluctua%ons2.Allthefiguresareadjustedtoremoveusualseasonalpa^erns

Knight-Ridderwouldn’tcommentontheoffer1.Harscodeclinedtosaywhatcountryplacedtheorder2.Coastalwouldn’tdisclosetheterms

Salesgrewalmost7%to$UNKm.from$UNKm.1.Salesrosemorethan7%to$94.9m.from$88.3m.2.Salessurged40%toUNKb.yenfromUNKb.

SU-RNNAnalysis

•  Cantransferseman%cinforma%onfromsinglerelatedexample

•  Trainsentences:• Heeatsspaghewwithafork.• Sheeatsspaghewwithpork.

•  Testsentences• Heeatsspaghewwithaspoon.• Heeatsspaghewwithmeat.

SU-RNNAnalysis

LabelinginRecursiveNeuralNetworks

Neural Network

83

• Wecanuseeachnode’srepresenta%onasfeaturesforasoJmaxclassifier:

•  Trainingsimilartomodelinpart1withstandardcross-entropyerror+scores

SoftmaxLayer

NP

64

Version3:Composi9onalityThroughRecursiveMatrix-VectorSpaces

Onewaytomakethecomposi%onfunc%onmorepowerfulwasbyuntyingtheweightsWButwhatifwordsactmostlyasanoperator,e.g.“very”in

verygoodProposal:Anewcomposi%onfunc%on

p=tanh(W+b)

c1c2

Before:

Version3:Matrix-vectorRNNs[Socher,Huval,Bhat,Manning,&Ng,2012]

p

Composi9onalityThroughRecursiveMatrix-VectorRecursiveNeuralNetworks

p=tanh(W+b)

c1c2 p=tanh(W+b)

C2c1C1c2

67

Matrix-vectorRNNs[Socher,Huval,Bhat,Manning,&Ng,2012]

p=

AB

=P

Predic9ngSen9mentDistribu9onsGoodexamplefornon-linearityinlanguage

69

Classifica9onofSeman9cRela9onships

•  CananMV-RNNlearnhowalargesyntac%ccontextconveysaseman%crela%onship?

•  My[apartment]e1hasapre^ylarge[kitchen]e2 àcomponent-wholerela%onship(e2,e1)

•  Buildasinglecomposi%onalseman%csfortheminimalcons%tuentincludingbothterms

Classifica9onofSeman9cRela9onships

Classifier Features F1SVM POS,stemming,syntac%cpa^erns 60.1MaxEnt POS,WordNet,morphologicalfeatures,noun

compoundsystem,thesauri,Googlen-grams77.6

SVM POS,WordNet,prefixes,morphologicalfeatures,dependencyparsefeatures,Levinclasses,PropBank,FrameNet,NomLex-Plus,Googlen-grams,paraphrases,TextRunner

82.2

RNN – 74.8MV-RNN – 79.1MV-RNN POS,WordNet,NER 82.4

SceneParsing

•  Themeaningofasceneimageisalsoafunc%onofsmallerregions,

•  howtheycombineaspartstoformlargerobjects,

•  andhowtheobjectsinteract.

Similarprincipleofcomposi%onality.

72

AlgorithmforParsingImages

SameRecursiveNeuralNetworkasfornaturallanguageparsing!(Socheretal.ICML2011)

Features

Grass Tree

Segments

SemanticRepresentations

People Building

ParsingNaturalSceneImagesParsingNaturalSceneImages

73

Mul9-classsegmenta9on

Method Accuracy

PixelCRF(Gouldetal.,ICCV2009) 74.3

Classifieronsuperpixelfeatures 75.9

Region-basedenergy(Gouldetal.,ICCV2009) 76.4

Locallabelling(Tighe&Lazebnik,ECCV2010) 76.9

SuperpixelMRF(Tighe&Lazebnik,ECCV2010) 77.5

SimultaneousMRF(Tighe&Lazebnik,ECCV2010) 77.5

RecursiveNeuralNetwork 78.1

StanfordBackgroundDataset(Gouldetal.2009)74

QCD-AwareRecursiveNeuralNetworksforJetPhysicsGillesLouppe,KyunghunCho,CyrilBecot,KyleCranmer