Neutrino Mass Hierarchy Determination with...

Post on 28-Jul-2020

2 views 0 download

transcript

Neutrino Mass Hierarchy Determination with PINGU

Ken ClarkUniversity of Toronto

K Clark - NuFACT 2013

IceCube

AMANDA

DeepCore

scattering

DOM: Digital Optical Module

• First need to introduce IceCube

• Instrumented ~1km3 of ice with ~5000 DOMs

• 78 vertical strings, 60 DOMs per string

2

K Clark - NuFACT 2013

IceCube Events

3

K Clark - NuFACT 2013

IceCube

X (m)-100 -50 0 50 100 150 200

Y (m

)

-150

-100

-50

0

50

100 IceCube

PINGU Geometry - 26m String Spacing

125m

• 78 Strings

• 125m string spacing

• 17m DOM spacing

• Add 8 strings

• 75m string spacing

• 7m DOM spacing

• Add 20 strings

• 26m string spacing

• 5m DOM spacing10 TeV 1 EeV1 TeV100 GeV10 GeV1 GeV100 MeV

IceCube

10 MeV

4

K Clark - NuFACT 2013

IceCube Results

• Designed to look for high energy (TeV - PeV) events

• Much success in recent studies at these energies

1.04 + 0.16 PeV 1.14 + 0.17 PeV

5

K Clark - NuFACT 2013

IceCube

X (m)-100 -50 0 50 100 150 200

Y (m

)

-150

-100

-50

0

50

100 IceCube

PINGU Geometry - 26m String Spacing

• 78 Strings

• 125m string spacing

• 17m DOM spacing

• Add 8 strings

• 75m string spacing

• 7m DOM spacing

• Add 20 strings

• 26m string spacing

• 5m DOM spacing10 TeV 1 EeV1 TeV100 GeV10 GeV1 GeV100 MeV

IceCube

10 MeV

6

125m

K Clark - NuFACT 2013

IceCube + DeepCore

• 78 Strings

• 125m string spacing

• 17m DOM spacing

• Add 8 strings

• 75m string spacing

• 7m DOM spacing

• Add 20 strings

• 26m string spacing

• 5m DOM spacing

X (m)-100 -50 0 50 100 150 200

Y (m

)

-150

-100

-50

0

50

100 IceCubeDeepCore

PINGU Geometry - 26m String Spacing

125m

10 TeV 1 EeV1 TeV100 GeV10 GeV1 GeV100 MeV

IceCube

10 MeV

DeepCore

7

75m

K Clark - NuFACT 2013

IceCube + DeepCore

• Addition of extra strings in closer proximity lowers the detection threshold energy

• Volumes shown are calculated at trigger level

8

K Clark - NuFACT 2013

IceCube + DeepCore

• Addition of extra strings in closer proximity lowers the detection threshold energy

• This allows for sensitivity at the energy of an oscillation minimum

9

K Clark - NuFACT 2013

DeepCore Results

• Approximately 1 year of data analyzed

• High rate in detector provides large event sample

• High energy sample constrains uncertainties in fit

10

Phys. Rev. Lett. 111, 081801 (2013)

K Clark - NuFACT 2013

• Oscillation parameters extracted

• Very good agreement with world averages

• Possible improvement with more advanced reconstructions and event selection

DeepCore Results

11

K Clark - NuFACT 2013

IceCube + DeepCore

• 78 Strings

• 125m string spacing

• 17m DOM spacing

• Add 8 strings

• 75m string spacing

• 7m DOM spacing

• Add 20 strings

• 26m string spacing

• 5m DOM spacing

X (m)-100 -50 0 50 100 150 200

Y (m

)

-150

-100

-50

0

50

100 IceCubeDeepCore

PINGU Geometry - 26m String Spacing

125m

75m

10 TeV 1 EeV1 TeV100 GeV10 GeV1 GeV100 MeV

IceCube

10 MeV

DeepCore

12

K Clark - NuFACT 2013

X (m)-100 -50 0 50 100 150 200

Y (m

)-150

-100

-50

0

50

100 IceCubeDeepCorePINGU

PINGU Geometry - 26m String Spacing

IceCube + DeepCore + PINGU• 78 Strings

• 125m string spacing

• 17m DOM spacing

• Add 8 strings

• 75m string spacing

• 7m DOM spacing

• Add >=20 strings

• 26m string spacing

• 5m DOM spacing

125m

75m

26m

10 TeV 1 EeV1 TeV100 GeV10 GeV1 GeV100 MeV

IceCube

10 MeV

DeepCorePINGU

13

K Clark - NuFACT 2013

• 9.28 GeV Neutrino, 4.9 GeV muon, 4.5 GeV cascade

IceCube + DeepCore

Improvement with PINGU

14

K Clark - NuFACT 2013

• 9.28 GeV Neutrino, 4.9 GeV muon, 4.5 GeV cascade

IceCube + DeepCore

Improvement with PINGU

IceCube + DeepCore + PINGU15

K Clark - NuFACT 2013

PINGU Physics• Many topics opened up by the lowering of

the energy threshold• muon neutrino disappearance• tau neutrino appearance• maximal θ23

• dark matter• neutrino mass hierarchy

16

K Clark - NuFACT 2013

PINGU Physics• Many topics opened up by the lowering of

the energy threshold• muon neutrino disappearance• tau neutrino appearance• maximal θ23

• dark matter• neutrino mass hierarchy

17

K Clark - NuFACT 2013

Neutrino Mass Hierarchy• Three flavour

oscillations mean disappearance/appearance of νμ are both important

P⌫µ!⌫µ = 1�

cos

2✓

m13sin

22✓23 ⇥ sin

2

1.27

✓�m

231 +A+ (�m

231)

m

2

◆L

E

�sin2✓m13sin22✓23 ⇥ sin2

1.27

✓�m2

31 +A� (�m231)

m

2

◆L

E

�sin4✓23sin22✓m13sin

2

1.27(�m2

31)m L

E

• Can be used to distinguish mass hieararchy

18

K Clark - NuFACT 2013

1Length (km)

0 2000 4000 6000 8000 10000 12000

Eart

h D

ensi

ty (g

/cm

^3)

0

2

4

6

8

10

12

14Normal Hierarchy

Inverted Hierarchy

°) with Travel Through the Earth - 10 GeV, 179µν→µνP(

)µν

→µν

P(

00.10.20.30.40.50.60.70.80.91

Why Atmospheric Neutrinos?

• Oscillation probability P(νμ→νμ) directly related to L/E• L measured using angle through the Earth

19

K Clark - NuFACT 2013

1

1

2

2Length (km)

0 2000 4000 6000 8000 10000 12000

Eart

h D

ensi

ty (g

/cm

^3)

0

2

4

6

8

10

12

14Normal Hierarchy

Inverted Hierarchy

°) with Travel Through the Earth - 10 GeV, 179µν→µνP(

)µν

→µν

P(

00.10.20.30.40.50.60.70.80.91

Length (km)0 1000 2000 3000 4000 5000 6000 7000

Eart

h D

ensi

ty (g

/cm

^3)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Normal Hierarchy

Inverted Hierarchy

°) with Travel Through the Earth - 6 GeV, 126µν→µνP(

)µν

→µν

P(

00.10.20.30.40.50.60.70.80.91

1

2

Why Atmospheric Neutrinos?

20

K Clark - NuFACT 2013

PINGU Significance

i = cos(zenith)j = energy

21

• Atmospheric neutrinos provide a large flux of incoming neutrinos at a range of incoming angles and energies

• Non-resonance MSW effects make up roughly 2/3 of PINGU’s sensitivity as (anti-)neutrinos travel through the mantle

• Parametric resonance occurs for neutrinos traveling through the core to make up the remaining 1/3

• Resonances are due to matter-induced oscillation phase changes

Core

K Clark - NuFACT 2013

Calculating Significance• Counts in one year are

binned depending on energy and zenith angle

• This includes both νμ and νμ

• There are differences in the number of counts per bin

• These differences create the patterns which give the distinguishability

N IHij �NNH

ijqNNH

ij

i = cos(zenith)j = energy

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Ener

gy (G

eV)

2

4

6

8

10

12

14

16

18

20

200

400

600

800

1000

1200

Counts in PINGU 1 Year - NH

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Ener

gy (G

eV)

2

4

6

8

10

12

14

16

18

20

200

400

600

800

1000

1200

1400Counts in PINGU 1 Year - IH

22

K Clark - NuFACT 2013

Calculating Significance

N IHij �NNH

ijqNNH

ij

i = cos(zenith)j = energy

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Ener

gy (G

eV)

2

4

6

8

10

12

14

16

18

20

-6

-4

-2

0

2

4

6]1/2Distinguishability Metric [(IH-NH)/NH

23

• As an illustration, a scaled subtraction between hierarchies can be done

• Not the way significance is calculated, but illustrative

• As an example of systematics, look at resolutions

Perfect detector resolution

K Clark - NuFACT 2013

Calculating Significance

N IHij �NNH

ijqNNH

ij

i = cos(zenith)j = energy

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Ener

gy (G

eV)

2

4

6

8

10

12

14

16

18

20

-6

-4

-2

0

2

4

6]1/2Distinguishability Metric [(IH-NH)/NH

• As an illustration, a scaled subtraction between hierarchies can be done

• Not the way significance is calculated, but illustrative

• As an example of systematics, look at resolutions

24

Zenith resolution: 10° Energy resolution 1 GeV

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Ener

gy (G

eV)

2

4

6

8

10

12

14

16

18

20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1]1/2Distinguishability Metric [(IH-NH)/NH

K Clark - NuFACT 2013

Calculating Significance

N IHij �NNH

ijqNNH

ij

i = cos(zenith)j = energy

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Ener

gy (G

eV)

2

4

6

8

10

12

14

16

18

20

-6

-4

-2

0

2

4

6]1/2Distinguishability Metric [(IH-NH)/NH

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Ener

gy (G

eV)

2

4

6

8

10

12

14

16

18

20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1]1/2Distinguishability Metric [(IH-NH)/NH

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Ener

gy (G

eV)

2

4

6

8

10

12

14

16

18

20

-1

-0.5

0

0.5

1

]1/2Distinguishability Metric [(IH-NH)/NH

• As an illustration, a scaled subtraction between hierarchies can be done

• Not the way significance is calculated, but illustrative

• As an example of systematics, look at resolutions

25

Zenith resolution: 12.5° Energy resolution 3 GeV

K Clark - NuFACT 2013

PINGU Systematics• Reconstructions are obviously a

significant factor in the hierarchy determination

• Currently using DeepCore algorithms

• New more computationally intensive algorithms may improve resolutions

• Also studying many other sytematics

• θ23, θ13 Δm2atm, δCP

• Atmospheric ν spectrum, efficiency errors, etc.

26

Events with Selection Applied - Energy

Events with Selection Applied - Zenith Angle

K Clark - NuFACT 2013

PINGU Hierarchy Analysis• For the final result, two different analysis

methods are being pursued• Both rely on the creation of “templates”

from simulated data

27

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

(Ene

rgy

(GeV

))10

Log

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

20

40

60

80

100

Inverted Hierarchy Template - Event Selection Applied

Cos(zenith angle)-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

(Ene

rgy

(GeV

))10

Log

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

20

40

60

80

100

Normal Hierarchy Template - Event Selection Applied

K Clark - NuFACT 2013

Analysis Method 1• Uses the “Asimov” method using the most likely dataset at

each value of the oscillation parameters

• Calculate the χ2 as a function of these parameters and minimize for Δm2>0 and Δm2<0

28

K Clark - NuFACT 2013

Analysis Method 2

• Throw many pseudo-experiments varying the bin contents with statistical errors, allow oscillation parameters to be fit

• Generate likelihood ratios, determine significance from these

29

lambdaInvExpInvCosHist_244_tot

Entries 1e+07Mean 15.84RMS 5.527

LLR-40 -20 0 20 40

1

10

210

310

410

510lambdaInvExpInvCosHist_244_tot

Entries 1e+07Mean 15.84RMS 5.527

= 2.44132MΔ(Observed Inv Exp Inv) / (Obs Inv Exp Norm)

lambdaNormExpInvCosHist_244_tot

Entries 1e+07Mean -13.57RMS 5.416

lambdaNormExpInvCosHist_244_tot

Entries 1e+07Mean -13.57RMS 5.416

lambdaNormExpInvCosHist_244_tot

Entries 1e+07Mean -13.57RMS 5.416

132MΔ

0.2100.2120.2140.2160.2180.2200.2220.2240.2260.2280.2300.2320.2340.2360.2380.2400.2420.2440.2460.2480.2500.2520.2540.2560.2580.2600.2620.2640.2660.2680

1000

2000

3000

4000

5000

310× with Trial Sets Pulled at 0.24413

2MΔBest Likelihood value for

Template:IH Data:IH

Template:NH Data:NH

Template:NH Data:IH

Template:IH Data:NH

K Clark - NuFACT 2013

Supplemental Methods• Two relatively fast analysis methods used to

study effects of systematics & parameters

30

K Clark - NuFACT 2013

Hierarchy Sensitivity

31

• Calculated sensitivity shown under several assumptions• Event selection, efficiency and detector geometry varied

• Note that all systematics have not been included here

arXiv: 1306.5846

K Clark - NuFACT 2013

PINGU Current Activities• Clearly no data to show yet• Studies underway for detailed LoI• Example: choosing a detector geometry

X (m)-100 -50 0 50 100 150 200

Y (m

)

-150

-100

-50

0

50

100PINGU Geometry V6 (Dozier)

IceCube

DeepCore

PINGU (HQE)

PINGU Geometry V6 (Dozier)

32

X (m)-100 -50 0 50 100 150 200

Y (m

)

-150

-100

-50

0

50

100 IceCube

DeepCore

PINGU

87 88 89 90 91 92 93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124 125 126

PINGU Geometry V15 (Ellett)

X (m)-100 -50 0 50 100 150 200

Y (m

)

-150

-100

-50

0

50

100 IceCube

DeepCore

PINGU

87 88 89 90 91 92 93 94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131 132 133

PINGU Geometry V14 (Domi)

K Clark - NuFACT 2013

PINGU Advantages• Relatively fast

• Deployment could begin in the 2016-2017 season, takes 2-3 years

• Relatively inexpensive• Start up costs on the order of $10M plus ~$1.25M

per string

• IceCube provides well understood veto • Well understood technology

• IceCube techniques have proven to be robust33

K Clark - NuFACT 2013

Conclusions

• IceCube and DeepCore have shown the viability of neutrino oscillation physics in the ice

• PINGU will extend the reach of these analyses to lower energies

• Detailed LoI and full proposal will be available soon

34

K Clark - NuFACT 2013

The IceCube/PINGU Collaboration44 institutions - 4 continents - ~250 Physicists

35

University of Toronto

K Clark - NuFACT 201336

K Clark - NuFACT 201337

Oscillograms

K Clark - NuFACT 2013

Monte Carlo Procedure• Neutrino interactions

modeled with GENIE• Results passed to

Geant4 to create light-generating particles

• Custom GPU software propagates light through detector

38

K Clark - NuFACT 2013

PINGU Advantages• This is all known

technology

• Drilling, installation can be done “quickly”

• Low cost (relative to other experiments)

• “We know how to do this”

39