Neutrinoless double beta decay without proton decayNeutrinoless double beta decay without proton...

Post on 01-Jan-2020

17 views 4 download

transcript

Neutrinoless double beta decay without proton decay

Xinshuai YanDepartment of Physics and Astronomy

University of Kentucky Lexington, KY

October 21st-23rd, 2018, DBD18, Hawaii

Based, in part, on…Susan Gardner and X.Y., arXiv:1602.00693,

1808.05288, 1810.XXXX.

1

Origin of neutrino mass

q Neutrino flavor-changing oscillations Observed by Super-K and Sudbury Neutrino Observatory

q (therefore) neutrinos have mass

TakaakiKajita ArthurB.McDonald

β€’ Neutrinooscillation

β€’ Majorana or Dirac neutrinos?Ø If Dirac, like other fermions in SM, it can be generated by

the Higgs mechanism (a right-handed 𝑣 field is needed)Ø If Majorana, a dimension five mass term appears

v Observationofneutrinoless double(0𝑣𝛽𝛽) decayshowsthatLisbrokenbytwounits andneutrinohasaneffectiveMajorana mass. [Schechter &Valle, (1982)]

[Weinberg, (1979)]

2

Mechanismsof0𝑣𝛽𝛽decay

Ø (a)-(c): A light neutrino is exchanged --- β€œlong-range” diagrams;Ø (d): Mediated by heavy particles --- β€œshort-range” diagram.

[Bonnetetal(2013)]

0𝑣𝛽𝛽 is mediated by a mass dimension [d]= 9 operator:π’ͺ ∝ 𝑒)𝑒)𝑑𝑑𝑒̅𝑒̅ Or πœ‹.πœ‹. β†’ 𝑒.𝑒.

Short---6fermions

If observed, regardless of the mechanism causing it,the v has a Majorana mass! [Schechter &Valle, (1982) ]

Topology II

3

[Bonnetetal(2013)]The two basic tree-level topologies realizing [d]=9 0𝑣𝛽𝛽 decay operator:

Twotopologiesof0𝑣𝛽𝛽 decayoperator

long-range / short-range short-range𝒗 𝑭

Topology I

𝒗/𝑭

4

Outlinev Use β€œminimal” models: the new interactions respect SM

gauge symmetry and are also renormalizable ([d]=3, 4).

v Add new scalars and vectors, and study B and/or L violations.

v We remove proton (p) decay ( βˆ†π΅ = 1)explicitly. q Non-observation of proton (p) decay set severe constraints on new

physics (GUT scale); q Lack of β€œsecret ingredients”, such as discrete symmetry, etc. as

would appear in a GUT

v We check what mechanisms (models) of 0𝑣𝛽𝛽 decay can survive.

Ø Note: the representations of new scalars and vectors are in

5

Treelevelprotondecaydiagrams

[Arnold, Fornal, andWise (2013)]

𝑋(3,1,-4/3), 𝑋𝑒𝑒, π‘‹οΏ½Μ…οΏ½π‘’Μ…π‘†π‘ˆ(3)Γ—π‘†π‘ˆ(2)Γ—π‘ˆ(1)

β„’ = 𝑒𝑑𝑒𝑒 𝑝 β†’ 𝑒?πœ‹@

Possible interactions between new particles and SM fermions permit no proton decay

Ø e.g., 𝑋𝑒𝑒 , 𝑉𝐿𝑒, 𝑋𝑒𝑑, 𝑋𝑒)οΏ½Μ…οΏ½, 𝑋𝑄𝑄, …

,

Eliminate new particles that generate p (|βˆ†π΅|=1) decay

More precisely, e.g., 𝑉𝐿𝑒 and 𝑋𝑒𝑒:

(aandbdenote generation.)

AtlowE

6

Scalar/vector-fermion interactions without p-decay

[Arnold, Fornal, andWise (2013)Assad, Fornal, Grinstein (2018)S. Gardner andX.Y.(2018)]

Possible interactions between new particles and SM fermions:

These interactions do not break L or B!

7

0𝑣𝛽𝛽 decayinminimal scalar models

Topology II:

[Bonnet etal(2013)]

Ø 𝑋D𝑋E𝑋F?Ø 𝑋G𝑋H𝑋F?Ø 𝑋G𝑋E𝑋H?

Possible interactions (atD)inSMrep.:

[S.GardnerandX.Y.(2018)]

v Without p decay

5β†’ 𝟏:Number of decompositions drops!!

β€’ Note the different shorthand:β€’ With p decay

π‘ˆπ‘’π‘š(1)Γ—π‘†π‘ˆπ‘(3)

𝑋(3,1,-4/3), 𝑋𝑒𝑒 iseliminated byno-protondecaycondition.𝑂𝑛𝑒𝑒π‘₯π‘Žπ‘šπ‘π‘™π‘’:

8

0𝑣𝛽𝛽decayinminimal scalar models

Topology I:

Possible interactions atA ,B ,C ,DinSMrep.:q e.g., 4-ii-a:

[S.GardnerandX.Y.(2018)]

v Without p decay

The number of decomposition for topology (I) dropsοΌšπŸπŸ– β†’ πŸ“!

v Xi denotes a new scalar.

9

0𝑣𝛽𝛽 decayinminimal vector models v The number of decomposition for

topology (II) drops: πŸ“ β†’ 𝟎!

v The number of decomposition for topology (I) drops: πŸπŸ– β†’ 𝟏𝟏! Topology I:

Possible interactions atA ,B ,C ,D:

Ø E.g., 4-ii-a:

Observation:

v Vi denotes a new vector.

Ø No-p decay has great impact on mechanisms of 𝟎𝝊𝜷𝜷 decay in both topologies.

Ø Weexplorepossibleconnectionbetweenpatternsof|βˆ†B|=2processand0𝑣𝛽𝛽 decaywithinminimalscalarmodelsintopology(II).

10

Minimal scalar Xi interactions that break B and/or L

Appearedin[Arnold,Fornal,andWise(2013)]

[S.Gardner andX.Y.(2018)]

𝑛 βˆ’ 𝑛)oscillation

βˆ†πΏ = 2, βˆ†π΅ = 0A,B,C=>0𝑣𝛽𝛽decay

π‘‘π‘–π‘›π‘’π‘π‘™π‘’π‘œπ‘›π‘‘π‘’π‘π‘Žπ‘¦

conversion

Topology II:

E.g. :

[d]=3, 4.

11

Patternsof|βˆ†B|=2 & Majorana neutrino

β€’ M3 has scalar content X7 and X8 ;β€’ 𝑒.𝑝 β†’ 𝑒?οΏ½Μ…οΏ½ only => M10, M12, or

M15. Common scalar content: X1

One example: No 𝑒.𝑛 β†’ 𝑒.𝑛)& Yes 𝑛𝑛),

πœ‹.πœ‹. β†’ 𝑒.𝑒. decayA

M3 X7X7X8 M10 X7X8X8X1

M12 X5X5X8X1

A X1X8𝑋F^ M15 X4X4X8X1

Gell-Mann quotesitfromT.H.White

"Everything not forbidden is compulsory."[S.GardnerandX.Y.(2018)]

12

Summaryβ€’ Werevisitd=90πœπ›½π›½ decay operators and explore their minimal

ultraviolet-completemodels with new scalars and vectors.

β€’ No proton decay condition eliminates many of the mechanisms of 0𝑣𝛽𝛽decay, especially in topology II. Only one survives in scalar models (in the (SU(3), U(1)em ) basis), and none in vector models.

β€’ Within topology II scalar models, we show that the observation of 𝑛𝑛)oscillations and of particular nucleon-antinucleon conversion processes can reveal the Majorana nature of the neutrino.

13

Backup Slides

14[Bonnetetal(2013)]

Ø With p decay Topology I:

15

0𝑣𝛽𝛽decayinminimal scalar-vector models Topology II:

[Bonnet etal(2013)]

[Susan Gardner andX.Y.(2018)]

Ø #1: π‘½πŸ•ππ‘½πŸ•ππ‘ΏπŸ?, π‘½πŸ”

ππ‘½πŸ•ππ‘ΏπŸ‘?

Ø #3: π‘½πŸ’ππ‘½πŸ“π? π‘ΏπŸ‘, π‘½πŸ‘

ππ‘½πŸ“π? π‘ΏπŸ–, π‘½πŸ’ππ‘½πŸ‘ππ‘ΏπŸ•?,

π‘ΏπŸπ‘ΏπŸ–π‘ΏπŸ•?, π‘ΏπŸ‘π‘ΏπŸ’π‘ΏπŸ•?, π‘ΏπŸ‘π‘ΏπŸ–π‘ΏπŸ’?

Ø #4: π‘½πŸ—ππ‘½πŸ—ππ‘ΏπŸ–

Surviving decomposition & possible models:

Ø With p decay

v Without p decay

16

0𝑣𝛽𝛽 decayinminimal scalar-vector models Topology I:

[S.GardnerandX.Y.(2018)]

π‘‰βˆ’πœ“βˆ’π‘‰, π‘‰βˆ’πœ“βˆ’S

π‘‰βˆ’πœ“βˆ’π‘‰

π‘‰βˆ’πœ“βˆ’π‘‰, π‘‰βˆ’πœ“βˆ’S,π‘†βˆ’πœ“βˆ’π‘‰, Sβˆ’πœ“βˆ’S

π‘‰βˆ’πœ“βˆ’π‘‰

π‘‰βˆ’πœ“βˆ’π‘‰, π‘†βˆ’πœ“βˆ’π‘‰, Sβˆ’πœ“βˆ’Sπ‘†βˆ’πœ“βˆ’π‘‰, Sβˆ’πœ“βˆ’S

v Without p decay

17

Quarklevel𝑛 βˆ’ 𝑛) oscillationØ There are 4 independent quarklevel𝑛 βˆ’ 𝑛) oscillation operators that

respect SM gauge symmetry:[Raoand Shrock (1982)W.Caswell etal(1983)M.Buchoff etal(2012)]

q Note: M1 yields the operator (π’ͺ2)RRR, M2 yields (π’ͺ3)LLR, M3 yields (π’ͺ1)RRR.

[Raoand Shrock (1982)]

Quark level𝑛 βˆ’ 𝑛)oscillation operators with SU(3)⨂Uem 1 .

18

19

Estimate event number

β€’ t denotes experiment running time, L is the length of liquid deuterium target at 19K with number density 𝜌.

β€’ πœ™is the flux of electron beam(Dark Light exp. at Jlab)

Fixed target experiment:

20

Dim 5 and 7 proton decay

Assad, Fornal, Grinstein (2018)