Next Generation High-Energy Density Li-Ion -

Post on 09-Feb-2022

2 views 0 download

transcript

Next Generation High-Energy Density Li-Ion Batteries

Marie Kerlau

Young Engineers + Scientists Symposium 2012 March 20th, 2012, Berkeley, California

1 Leyden Energy Proprietary

Agenda •  Presentation of Leyden Energy •  Current Issues in Mobile Device Designs

Relating to Li-ion Batteries •  Energy Density Challenges and How to Address

Them •  Silicon-Based Materials •  Conclusion •  Q&A

2 Leyden Energy Proprietary

•  2007 – Leyden Energy founded

around acquisition of DuPont patent, spearheading the use of lithium-imide salt in battery electrolyte.

•  4 years of consequent R&D efforts led to the first scalable lithium-imide product launch by Leyden Energy in 2010

•  2011 - Series B Funding led by NEA, Lightspeed, Sigma, & Walden

A bit about Leyden Energy

3 Leyden Energy Proprietary

•  100% backward-compatible manufacturing processes leveraging existing lithium-ion production lines

•  UL/UN certified products (UL1642 & UN/DOT tests).

•  Multi-sourced, Tier-1 OEM approved

manufacturing partners in Asia with global distribution supply chain. “Factory within a factory” – Leyden Energy’s QC engineers on-site.

•  US-based pilot manufacturing and testing facility for world-class quality control & rapid prototyping. Facilities based in Fremont, CA.

Leyden  Energy’s  Fremont  ,  CA-­‐based  manufacturing,  packaging  and  tes<ng  capabili<es  enable  stateside  rapid  prototyping.      

Scalable Manufacturing, Testing and Rapid Prototyping

4 Leyden Energy Proprietary

•  UL/UN  cer$fied  products  (UL1642  &  UN/DOT  tests).    

US-­‐based  pilot  manufacturing  and  tes<ng  facility  for  world-­‐class  quality  control  &  rapid  prototyping.  Facili<es  based  in  Fremont,  CA.      

ü  Heat  Test  ü  Impact  Test  ü  Crush  Test  ü  Short  Circuit  Test  ü  Overcharge  Test  ü  Forced  Discharge  Test    …  and  other  tests.  

•  7 UL-approved products in 2011

5

Scalable Manufacturing, Testing and Rapid Prototyping

Leyden Energy Proprietary

LiPF6 + H2O = Trouble…

LiPF6 Hydrofluoric Acid is generated in reaction with H2O

DEGRADATION OF ACTIVE MATERIALS; GASSING; SHORTENED LIFECYCLE – ACCENTUATED BY RISING IN-DEVICE TEMPERATURE 6 Leyden Energy Proprietary

…Compounded by in-device heat

Mobile phone Tablet

7 Leyden Energy Proprietary

8

Lithium  Ion  Technology  Chemical  produc$on  of  Hydrofluoric    Acid  causes  bloa$ng,  deprecia$on    of  func$onality.  

Lithium  Imide  Technology  Increased  temperature  range,  no  Hydrofluoric  Acid  produc$on,  3x  performance  improvement.  

Li-imide™ Chemical Advantage

Anode LiPF6

Cathode

Anode Li-imide Cathode

Leyden Energy Proprietary

Li-imide™ – Pouch cycling at 20/40°C (68/104°F)

9 Leyden Energy Proprietary

Swelling over battery lifetime at 40˚C/104˚F

10 Leyden Energy Proprietary

11

More battery capacity per volume (volumetric) and weight (gravimetric) means more power per charge, or the same power in smaller/thinner packs.

With near-optimal performance over calendar life inventory outlasts LiPF6 by 300% giving embedded products far more shelf life.

Performance exceeds Li-ion (LiPF6 electrolyte) batteries by roughly 3:1 with over 1,000 charge/discharge cycles at 100% DOD (depth of discharge)

Superior thermal properties allow the battery to operate and cycle at temperatures exceeding those of conventional Li-ion cells – from -20°C (-4°F) up to continuous use at 60°C (140°F).

Triple Cycle Life

Higher Energy Density Triple Calendar Life

Temperature Resilience

Lithium Imide: Never Compromise

Leyden Energy Proprietary

12

Leyden Energy – Target Applications

All  markets,  especially  the  portable  electronics  market,  require  ever  increasing  energy  density  

Leyden Energy Proprietary

Energy Density Challenge: Form vs. Function

“Customers demand longer runtime per charge” = higher energy density or larger Z height

“Customers demand thinner devices” = smaller Z height

13 Leyden Energy Proprietary

No Moore’s Law for Li-ion

“Forget  Moore’s  Law  —  it’s  nothing  like  that…  Lithium  ion,  which  clearly  is  the  best  baWery  technology  today,  is  flat,  completely  flat  since  2003”  Winfried  Wilcke,  IBM    Source:  hWp://green.blogs.ny$mes.com/2010/09/06/when-­‐it-­‐comes-­‐to-­‐car-­‐baWeries-­‐moores-­‐law-­‐does-­‐not-­‐compute/  14 Leyden Energy Proprietary

Cycle life suffers with increase in energy density

LiPF6  based  pouch  cells  at  40°C  

15

Source:  Leyden  Energy  

Leyden Energy Proprietary

New Materials Are Needed to Boost Energy Density

16

Cathode  

Anode  

Electrolyte  

Issues  

High  capacity  materials  have  short  cycle  life  

No  candidate  with  high  capacity  at  4.2V  (120-­‐160mAh/g)  

DegradaSon  at  higher    voltages  than  4.2V  

Next  GeneraSon  Materials  

Alloys  (Si-­‐  and  Sn-­‐  based)  composites,  oxides  (SiO,SnO)  (600-­‐900mAh/g)  

5V  Mn-­‐cathode  solid  soluSon  system  (300mAh/g)  

Ionic  liquids,  5V  systems  

Leyden Energy Proprietary

ANODE    

Silicon  

 

ELECTROLYTE    

Cathode  and  Anode  agnos$c  

 

CATHODE    

NCM,  NCA,  LCO  and  High-­‐Voltage  Cathode  

 

17

Areas For Battery Innovation

Leyden Energy Proprietary

Silicon: the Next-Generation High-Capacity Anode Material For Li-Ion Batteries

•   Si  has  10x  higher  Li-­‐ion  storage  capability  than  graphite    Graphite:  C6    ↔    LiC6    Theore$cal  Capacity:  372  mAh/g  

   Silicon:  Si    ↔    Li4.4Si        Theore$cal  Capacity:  4200  mAh/g  

 •   Problem:  up  to  400%  volume  expansion  during  Li  ions      inser$on/extrac$on  causes  a  rapid  decrease  in  cycling  stability    •   Industry  has  been  searching  for  silicon  anode  that  works      and  is  affordable  

18 Leyden Energy Proprietary

19

•  Lower Dimensionality

o  Nanowires, Thin Films

•  Carbon Matrix

o  Si Nanoparticles Embedded in Carbon Matrix

•  Transition Metal Carbon Alloys and Oxides

o  Armorphous Regions with Si and No Carbide Formed

•  High Porosity

o  Si Coated on Porous Carbon Black, Nanotubes, Porous Si

Approaches to Solve Si Volume Change Problem

Leyden Energy Proprietary

Binder-Free Electrode: Si Growth on Metallic Support

Si  Thin  Film  

Si  Nanowires  

1-­‐Dimensional  Expansion  Reduces  Mechanical  Stress  During  Cycling  

Lithia$on  

Cracks,  Peeling  Cycling:  0.01-­‐1.2V,  1C  

Cycling:  0.01-­‐2V,  C/5  

Lithia$on  

Ø   High  capacity  but  difficulty  in    handling  nanowires  makes  it  difficult  to  mass  produce  

Ø   Despite  high  ini$al  capacity  the  film  cracks  upon  cycling  G.B.  Cho,  M.G.  Song,  S.H.  Bae,  J.K.  Kim,  Y.J.  Choi,  H.J.  Ahn,  J.H.  Ahn,  K.K.  Cho,  K.W.  Kim,  JPS  189  (2009)  738-­‐742.  

C.  K.  Chan,  R.  Ruffo,  S.  S.  Hong,  R.  A.  Huggins,  Y.  Cui,  JPS  189    (2009)  34-­‐39.  

Leyden Energy Proprietary 20

Capacity  m

Ah.g

-­‐1  

Cycle  Number  

Coulom

bic  Effi

cien

cy  (%

)  

Cycling:  0.01-­‐2V,  0.2C  

Carbon-­‐Si  Core-­‐Shell  Nanowires  

Crystalline-­‐Amorphous  Core-­‐Shell  Si  Nanowires  

a-­‐Si  c-­‐Si  

Binder-Free Electrode: Si Growth on Metallic Support 1-­‐Dimensional  Expansion  Reduces  Mechanical  Stress  During  Cycling  

Cycling:  0.01-­‐1V,  C/5  Cycle  Number  

Coulom

bic  Effi

cien

cy  

Capacity  m

Ah.g

-­‐1  

Ø   Poor  adhesion  to  substrate  and  high  synthesis  costs  make  this  material            difficult  to  handle/  manufacture  

L.-­‐F.  Cui,  Y.  Yang,  C.-­‐M.  Hsu,  and  Y.  Cui,  ,  Nano  LeGers  9  (9)  (2009)  3370-­‐3374  .  

L.-­‐F.  Cui,  R.  Ruffo,  C.  K.  Chan,  and  Y.  Cui,  ,  Nano  LeGers  9  (1)  (2009)  491-­‐495.  

Leyden Energy Proprietary 21

Silicon-Carbon Composite

Core-­‐Shell  Model  (Si@C)  

Grain-­‐Matrix  Model  (Si/C)  

Carbon  Matrix  Accommodates  the  Volume  Changes  Upon  Lithia$on/Delithia$on  

A`er  LithiaSon   A`er  DelithiaSon  As  Prepared  

Ø   Carbon  matrix/coa$ng  can  only  accommodate  volume  changes  to  a  limited            extent  thus  limi$ng  cycle  life  

P.  Gao,  J.  Fu,  J.  Yang,  R.  Lv,  J.  Wang,  Y.  Nuli  and  X.  Tang,  Phys.  Chem.  Chem.  Phys.  11  (2009)  11101-­‐11105.  

Leyden Energy Proprietary 22

Silicon-Carbon Composite

Granules:  Si  in  Porous  Carbon  Matrix    

Carbon  Black  

Si  

Si  Nanowires  

Pores  Accommodate  the  Volume  Changes  Upon  Lithia$on/Delithia$on  

Cell  po

ten$

al  (V

)  vs.  Li  m

etal  

Ø   Low  energy  density  due  to  high  porosity;  consump$on  of  electrolyte  due  to  high            surface  area  

Ø   Nanotube  agglomera$on  upon  cycling  reduces  cycle  life    

A.  Magasinski,  P.  Dixon,  B.  Hertzberg,  A.  Kvit,  J.  Ayala  and  G.  Yushin,  Nature  Materials  9  (2010)  353-­‐359  .  

M.-­‐H.  Park,  M.  G.  Kim,  J.  Joo,  K.  Kim,  J.  Kim,  S.  Ahn,  Y.  Cui,  and  J.  Cho,  Nano  LeGers  9  (11)  (2009)  3844-­‐3847.  

Leyden Energy Proprietary 23

Alloys and Oxides Inac$ve  Phase  Accommodates  the  Volume  Changes  Upon  Lithia$on/Delithia$on  

Alloy  (Si  with  transiSon  metals  and  metals:  for  example  Mn,  Co,  Al,  Sn)    

Oxide  (SiO)  

Ø   Lower  capacity  than  pure  Silicon  but  volume  change  is  smaller;  lower  1st  CE  than  the  alloy  

+Li+  

-­‐Li+  

Ø   Lower  capacity  than  pure  Silicon  but  volume  change  is  smaller  

M.  Yamada,  A.  Ueda,  K.  Matsumoto,  and  T.  Ohzuku,  JES,  158  (4)  (2011)  A417-­‐A421    

K.  Eberman,  3M  Company,  29th  Interna$onal  BaWery  Seminar  in  Florida  (2012-­‐5-­‐16).  

Leyden Energy Proprietary 24

25

Conclusion

•  Consumer  demand  for  higher-­‐energy  density  devices  creates  

challenges  to  design  thinner  baWeries  with  longer  run  $me  

•  The  trade-­‐off  with  Silicon  anode  material:  

•  The  highest-­‐capacity  Si  (2000  to  3500  mAh/g)  does  not  have  a  

cathode  material  to  match  such  a  high  capacity,  manufacturability  

is  ques$onable  (costs  +  technical  difficul$es),  cycle  life  is  limited  

•  Lower-­‐capacity  Si  (<1500mAh/g),  with  lower  expansion  rate  and  

manufacturing  costs,  longer  cycle  life,  would  enable  higher-­‐

energy  density  baWeries  to  be  commercially  available  sooner  

Leyden Energy Proprietary

26

Headquarters 46840 Lakeview Boulevard Fremont, California 94538 Info@leydenenergy.com Phone: +1-510-933-3800 Fax: +1-510-445-1032

America/Europe Sales sales@leydenenergy.com Phone: +1-510-933-3855 Toll Free: +1-866-543-4877

China Unit 2911-2912 29/F International Chamber of Commerce Tower, Fuhua Rd. 3 CBD Futian District, Shenzhen, 518048 China asiasales@leydenenergy.com Phone: +86-135100-75409