NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker,...

Post on 29-Dec-2015

213 views 0 download

transcript

NSDD Workshop, Trieste, February 2006

Nuclear Structure(II) Collective models

P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Overview of collective models

• (Rigid) rotor model

• (Harmonic quadrupole) vibrator model

• Liquid-drop model of vibrations and rotations

• Interacting boson model

• Particle-core coupling model

• Nilsson model

NSDD Workshop, Trieste, February 2006

Evolution of Ex(2+)

J.L. Wood, private communication

NSDD Workshop, Trieste, February 2006

Quantum-mechanical symmetric top• Energy spectrum:

• Large deformation large low Ex(2+).

• R42 energy ratio:

E rot I( ) =h2

2ℑI I +1( )

≡ A I I +1( ), I = 0,2,4,K

E rot 4+( ) / E rot 2+

( ) = 3.333K

NSDD Workshop, Trieste, February 2006

Rigid rotor model

• Hamiltonian of quantum-mechanical rotor in terms of ‘rotational’ angular momentum R:

• Nuclei have an additional intrinsic part Hintr with ‘intrinsic’ angular momentum J.

• The total angular momentum is I=R+J.

ˆ H rot =h2

2

R12

ℑ 1

+R2

2

ℑ 2

+R3

2

ℑ 3

⎣ ⎢

⎦ ⎥=

h2

2

Ri2

ℑ ii=1

3

NSDD Workshop, Trieste, February 2006

Rigid axially symmetric rotor

• For 1=2= ≠ 3 the rotor hamiltonian is

• Eigenvalues of H´rot:

• Eigenvectors KIM of H´rot satisfy:

ˆ H rot =h2

2ℑ i

Ii − Ji( )2

i=1

3

∑ =h2

2ℑ i

Ii2

i=1

3

∑ˆ ′ H rot

1 2 4 3 4 −

h2

ℑ i

IiJi

i=1

3

∑Coriolis

1 2 4 3 4 +

h2

2ℑ i

Ji2

i=1

3

∑intrinsic

1 2 4 3 4

′ E KI =h2

2ℑI I +1( ) +

h2

2

1

ℑ 3

−1

⎝ ⎜

⎠ ⎟K

2

I2 KIM = I I +1( ) KIM ,

Iz KIM = M KIM , I3 KIM = K KIM

NSDD Workshop, Trieste, February 2006

Ground-state band of an axial rotor• The ground-state spin of

even-even nuclei is I=0. Hence K=0 for ground-state band:

E I =h2

2ℑI I +1( )

NSDD Workshop, Trieste, February 2006

The ratio R42

NSDD Workshop, Trieste, February 2006

Electric (quadrupole) properties

• Partial -ray half-life:

• Electric quadrupole transitions:

• Electric quadrupole moments:

B E2;Ii → If( ) =1

2Ii +1If M f ekrk

2Y2μ θk,ϕ k( )k=1

A

∑ IiM i

2

M f μ

∑M i

eQ I( ) = IM = I16π

5ekrk

2

k=1

A

∑ Y20 θk,ϕ k( ) IM = I

T1/ 2γ Eλ( ) = ln2

h

λ +1

λ 2λ +1( )!![ ]2

hc

⎝ ⎜

⎠ ⎟

2λ +1

B Eλ( ) ⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

−1

NSDD Workshop, Trieste, February 2006

Magnetic (dipole) properties

• Partial -ray half-life:

• Magnetic dipole transitions:

• Magnetic dipole moments:

B M1;Ii → If( ) =1

2Ii +1If M f gk

l lk,μ + gkssk,μ( ) IiM i

k=1

A

∑2

M f μ

∑M i

μ I( ) = IM = I gkl lk,z + gk

ssk,z( )k=1

A

∑ IM = I

T1/ 2γ Mλ( ) = ln2

h

λ +1

λ 2λ +1( )!![ ]2

hc

⎝ ⎜

⎠ ⎟

2λ +1

B Mλ( ) ⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

−1

NSDD Workshop, Trieste, February 2006

E2 properties of rotational nuclei

• Intra-band E2 transitions:

• E2 moments:

• Q0(K) is the ‘intrinsic’ quadrupole moment:

B E2;KIi → KIf( ) =5

16πIiK 20 IfK

2e2Q0 K( )

2

Q KI( ) =3K 2 − I I +1( )I +1( ) 2I + 3( )

Q0 K( )

e ˆ Q 0 ≡ ρ ′ r ( )∫ r2 3cos2 ′ θ −1( )d ′ r , Q0 K( ) = K ˆ Q 0 K

NSDD Workshop, Trieste, February 2006

E2 properties of ground-state bands

• For the ground state (usually K=I):

• For the gsb in even-even nuclei (K=0):

Q K = I( ) =I 2I −1( )

I +1( ) 2I + 3( )Q0 K( )

B E2;I → I − 2( ) =15

32π

I I −1( )2I −1( ) 2I +1( )

e2Q02

Q I( ) = −I

2I + 3Q0

⇒ eQ 21+

( ) =2

716π ⋅B E2;21

+ → 01+

( )

NSDD Workshop, Trieste, February 2006

Generalized intensity relations

• Mixing of K arises from– Dependence of Q0 on I (stretching)

– Coriolis interaction– Triaxiality

• Generalized intra- and inter-band matrix elements (eg E2):

B E2;K iIi → K fIf( )

IiK i 2K f − K i IfK f

= M0 + M1Δ + M2Δ2 +L

with Δ = If If +1( ) − Ii Ii +1( )

NSDD Workshop, Trieste, February 2006

Inter-band E2 transitions• Example of g

transitions in 166Er:

B E2;Iγ → Ig( )

Iγ 2 2 − 2 Ig0

= M0 + M1Δ + M2Δ2 +L

Δ = Ig Ig +1( ) − Iγ Iγ +1( )

W.D. Kulp et al., Phys. Rev. C 73 (2006) 014308

NSDD Workshop, Trieste, February 2006

Modes of nuclear vibration

• Nucleus is considered as a droplet of nuclear matter with an equilibrium shape. Vibrations are modes of excitation around that shape.

• Character of vibrations depends on symmetry of equilibrium shape. Two important cases in nuclei:– Spherical equilibrium shape– Spheroidal equilibrium shape

NSDD Workshop, Trieste, February 2006

Vibrations about a spherical shape

• Vibrations are characterized by a multipole quantum number in surface parametrization:

=0: compression (high energy) =1: translation (not an intrinsic excitation) =2: quadrupole vibration

R θ,ϕ( ) = R0 1+ α λμYλμ* θ,ϕ( )

μ =−λ

∑λ

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⇔ ⇔

NSDD Workshop, Trieste, February 2006

Properties of spherical vibrations• Energy spectrum:

• R42 energy ratio:

• E2 transitions:

Evib n( ) = n + 5

2( )hω, n = 0,1K

Evib 4+( ) / Evib 2+

( ) = 2

B E2;21+ → 01

+( ) = α 2

B E2;22+ → 01

+( ) = 0

B E2;n = 2 → n =1( ) = 2α 2

NSDD Workshop, Trieste, February 2006

Example of 112Cd

NSDD Workshop, Trieste, February 2006

Possible vibrational nuclei from R42

NSDD Workshop, Trieste, February 2006

Vibrations about a spheroidal shape

• The vibration of a shape with axial symmetry is characterized by a.

• Quadrupole oscillations: =0: along the axis of

symmetry () =1: spurious rotation =2: perpendicular to

axis of symmetry ()

c βγ

⇔γ⇔

c β

NSDD Workshop, Trieste, February 2006

Spectrum of spheroidal vibrations

NSDD Workshop, Trieste, February 2006

Example of 166Er

NSDD Workshop, Trieste, February 2006

Rigid triaxial rotor

• Triaxial rotor hamiltonian 1 ≠ 2 ≠ 3 :

• H´mix non-diagonal in axial basis KIM K is not a conserved quantum number

ˆ ′ H rot =h2

2ℑ i

Ii2

i=1

3

∑ =h2

2ℑI2 +

h2

2ℑ f

I32

ˆ ′ H axial

1 2 4 4 3 4 4

+h2

2ℑ g

I+2 + I−

2( )

ˆ ′ H mix

1 2 4 4 3 4 4

1

ℑ=

1

2

1

ℑ 1

+1

ℑ 2

⎝ ⎜

⎠ ⎟,

1

ℑ f

=1

ℑ 3

−1

ℑ,

1

ℑ g

=1

4

1

ℑ 1

−1

ℑ 2

⎝ ⎜

⎠ ⎟

NSDD Workshop, Trieste, February 2006

Rigid triaxial rotor spectra

=30o

=15o

NSDD Workshop, Trieste, February 2006

Tri-partite classification of nuclei

• Empirical evidence for seniority-type, vibrational- and rotational-like nuclei:

• Need for model of vibrational nuclei. N.V. Zamfir et al., Phys. Rev. Lett. 72 (1994) 3480

NSDD Workshop, Trieste, February 2006

Interacting boson model

• Describe the nucleus as a system of N interacting s and d bosons. Hamiltonian:

• Justification from– Shell model: s and d bosons are associated with S

and D fermion (Cooper) pairs.– Geometric model: for large boson number the IBM

reduces to a liquid-drop hamiltonian.

ˆ H IBM = ε iˆ b i

+ ˆ b ii=1

6

∑ + υ i1i2i3i4ˆ b i1

+ ˆ b i2+ ˆ b i3

ˆ b i4i1i2i3i4 =1

6

NSDD Workshop, Trieste, February 2006

Dimensions• Assume available 1-fermion states. Number

of n-fermion states is

• Assume available 1-boson states. Number of n-boson states is

• Example: 162Dy96 with 14 neutrons (=44) and 16 protons (=32) (132Sn82 inert core).– SM dimension: ~7·1019

– IBM dimension: 15504

n

⎝ ⎜

⎠ ⎟=

Ω!

n! Ω − n( )!

+ n −1

n

⎝ ⎜

⎠ ⎟=

Ω + n −1( )!

n! Ω −1( )!

NSDD Workshop, Trieste, February 2006

Dynamical symmetries

• Boson hamiltonian is of the form

• In general not solvable analytically.

• Three solvable cases with SO(3) symmetry:€

ˆ H IBM = ε iˆ b i

+ ˆ b ii=1

6

∑ + υ i1i2i3i4ˆ b i1

+ ˆ b i2+ ˆ b i3

ˆ b i4i1i2i3i4 =1

6

U 6( )⊃U 5( )⊃SO 5( )⊃SO 3( )

U 6( )⊃SU 3( )⊃SO 3( )

U 6( )⊃SO 6( )⊃SO 5( )⊃SO 3( )

NSDD Workshop, Trieste, February 2006

U(5) vibrational limit: 110Cd62

NSDD Workshop, Trieste, February 2006

SU(3) rotational limit: 156Gd92

NSDD Workshop, Trieste, February 2006

SO(6) -unstable limit: 196Pt118

NSDD Workshop, Trieste, February 2006

Applications of IBM

NSDD Workshop, Trieste, February 2006

Classical limit of IBM• For large boson number N the minimum of

V()=N;H approaches the exact ground-state energy:

V β,γ( )∝

U(5) :β 2

1+ β 2

SU(3) :β 4 − 4 2β 3 cos3γ + 8β 2

8 1+ β 2( )

2

SO(6) :1− β 2

1+ β 2

⎝ ⎜

⎠ ⎟

2

⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪

NSDD Workshop, Trieste, February 2006

Phase diagram of IBM

J. Jolie et al. , Phys. Rev. Lett. 87 (2001) 162501.

NSDD Workshop, Trieste, February 2006

The ratio R42

NSDD Workshop, Trieste, February 2006

Extensions of IBM

• Neutron and proton degrees freedom (IBM-2):– F-spin multiplets (N+N=constant)

– Scissors excitations

• Fermion degrees of freedom (IBFM):– Odd-mass nuclei– Supersymmetry (doublets & quartets)

• Other boson degrees of freedom:– Isospin T=0 & T=1 pairs (IBM-3 & IBM-4)– Higher multipole (g,…) pairs

NSDD Workshop, Trieste, February 2006

Scissors mode• Collective displacement

modes between neutrons and protons:– Linear displacement

(giant dipole resonance): R-R E1 excitation.

– Angular displacement (scissors resonance): L-L M1 excitation.

NSDD Workshop, Trieste, February 2006

Supersymmetry• A simultaneous description of even- and odd-mass

nuclei (doublets) or of even-even, even-odd, odd-even and odd-odd nuclei (quartets).

• Example of 194Pt, 195Pt, 195Au & 196Au:

NSDD Workshop, Trieste, February 2006

Bosons + fermions

• Odd-mass nuclei are fermions.

• Describe an odd-mass nucleus as N bosons + 1 fermion mutually interacting. Hamiltonian:

• Algebra:

• Many-body problem is solved analytically for certain energies and interactions .

ˆ H IBFM = ˆ H IBM + ε j ˆ a j+ ˆ a j

j=1

Ω

∑ + υ i1 j1i2 j2

ˆ b i1+ ˆ a j1

+ ˆ b i2 ˆ a j2

j1 j2 =1

Ω

∑i1i2 =1

6

U 6( )⊕U Ω( ) =ˆ b i1

+ ˆ b i2ˆ a j1

+ ˆ a j2

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

NSDD Workshop, Trieste, February 2006

Example: 195Pt117

NSDD Workshop, Trieste, February 2006

Example: 195Pt117 (new data)

NSDD Workshop, Trieste, February 2006

Nuclear supersymmetry

• Up to now: separate description of even-even and odd-mass nuclei with the algebra

• Simultaneous description of even-even and odd-mass nuclei with the superalgebra

U 6( )⊕U Ω( ) =ˆ b i1

+ ˆ b i2ˆ a j1

+ ˆ a j2

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

U 6/Ω( ) =ˆ b i1

+ ˆ b i2ˆ b i1

+ ˆ a j2

ˆ a j1+ ˆ b i2 ˆ a j1

+ ˆ a j2

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

NSDD Workshop, Trieste, February 2006

U(6/12) supermultiplet

NSDD Workshop, Trieste, February 2006

Example: 194Pt116 &195Pt117

NSDD Workshop, Trieste, February 2006

Example: 196Au117

NSDD Workshop, Trieste, February 2006

Bibliography• A. Bohr and B.R. Mottelson, Nuclear Structure. I

Single-Particle Motion (Benjamin, 1969).• A. Bohr and B.R. Mottelson, Nuclear Structure. II

Nuclear Deformations (Benjamin, 1975).• R.D. Lawson, Theory of the Nuclear Shell Model

(Oxford UP, 1980).• K.L.G. Heyde, The Nuclear Shell Model (Springer-

Verlag, 1990).• I. Talmi, Simple Models of Complex Nuclei (Harwood,

1993).

NSDD Workshop, Trieste, February 2006

Bibliography (continued)• P. Ring and P. Schuck, The Nuclear Many-Body

Problem (Springer, 1980).• D.J. Rowe, Nuclear Collective Motion (Methuen,

1970).• D.J. Rowe and J.L. Wood, Fundamentals of Nuclear

Collective Models, to appear.• F. Iachello and A. Arima, The Interacting Boson

Model (Cambridge UP, 1987).