Overall Shell Mass Balances I

Post on 23-Feb-2016

87 views 1 download

description

Overall Shell Mass Balances I. Outline. 3.Molecular Diffusion in Gases Molecular Diffusion in Liquids Molecular Diffusion in Solids Prediction of Diffusivities Overall Shell Mass Balances Concentration Profiles. Overall Shell Mass Balance . Species entering and leaving the system - PowerPoint PPT Presentation

transcript

Overall ShellMass Balances I

Outline

3. Molecular Diffusion in Gases 4. Molecular Diffusion in Liquids 5. Molecular Diffusion in Solids6. Prediction of Diffusivities

7. Overall Shell Mass Balances1. Concentration Profiles

Overall Shell Mass Balance

Species entering and leaving the system

by Molecular Transport +by Convective Transport

Mass Generationby homogeneous chemical reaction

* May also be expressed in terms of moles

Steady-State!

Overall Shell Mass Balance

* May also be expressed in terms of moles

Common Boundary Conditions:

1. Concentration is specified at the surface.2. The mass flux normal to a surface maybe given.3. At solid- fluid interfaces, convection applies: NA = kcβˆ†cA.4. The rate of chemical reaction at the surface can be specified.

β™ͺ At interfaces, concentration is not necessarily continuous.

Concentration Profiles

I. Diffusion Through a

Stagnant Gas Film

Concentration Profiles

I. Diffusion Through a Stagnant Gas FilmAssumptions:

1. Steady-state2. T and P are constants3. Gas A and B are ideal4. No dependence of vz on

the radial coordinate

At the gas-liquid interface,

Concentration Profiles

I. Diffusion Through a Stagnant Gas FilmMass balance is done in this thin shell

perpendicular to the direction of mass flow

𝑁 𝐴=βˆ’π‘π·π΄π΅π‘‘π‘₯𝐴

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴+𝑁𝐡)

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑁 𝐴=βˆ’π‘π·π΄π΅π‘‘π‘₯𝐴

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴+𝑁𝐡)

Since B is stagnant,

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴

𝑑𝑧

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴

𝑑𝑧

𝑆𝑁 𝐴 Η€π‘§βˆ’π‘†π‘ 𝐴 ǀ𝑧+βˆ† 𝑧=0

Applying the mass balance,

where S = cross-sectional area of the column

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑆𝑁 𝐴 Η€π‘§βˆ’π‘†π‘ 𝐴 ǀ𝑧+βˆ† 𝑧=0

Dividing by SΞ”z and taking the limit as Ξ”z 0,

βˆ’π‘‘π‘ 𝐴

𝑑𝑧 =0 NA = constant

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

βˆ’π‘‘π‘ 𝐴

𝑑𝑧 =0 NA = constant

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴

𝑑𝑧But,

Substituting,

𝑑𝑑𝑧 ( 𝑐𝐷 𝐴𝐡

(1βˆ’ π‘₯𝐴 )𝑑π‘₯𝐴

𝑑𝑧 )=0

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film𝑑𝑑𝑧 ( 𝑐𝐷 𝐴𝐡

(1βˆ’ π‘₯𝐴 )𝑑π‘₯ 𝐴

𝑑𝑧 )=0For ideal gases, P = cRT and so at constant P and T, c = constantDAB for gases can be assumed independent of concentration

𝑑𝑑𝑧 ( 1

(1βˆ’ π‘₯𝐴 )𝑑π‘₯ 𝐴

𝑑𝑧 )=0

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑑𝑑𝑧 ( 1

(1βˆ’ π‘₯𝐴 )𝑑π‘₯ 𝐴

𝑑𝑧 )=0Integrating once,

1(1βˆ’π‘₯𝐴 )

𝑑π‘₯𝐴

𝑑𝑧 =𝐢1

Integrating again,

βˆ’ ln (1βˆ’ π‘₯𝐴 )=𝐢1𝑧+𝐢2

Concentration Profiles

I. Diffusion Through a Stagnant Gas Filmβˆ’ ln (1βˆ’ π‘₯𝐴 )=𝐢1𝑧+𝐢2

Let C1 = -ln K1 and C2 = -ln K2,

1βˆ’π‘₯𝐴=𝐾 1𝑧𝐾 2

B.C.

at z = z1, xA = xA1

at z = z2, xA = xA2 ( 1βˆ’π‘₯𝐴

1βˆ’ π‘₯𝐴1 )=( 1βˆ’π‘₯𝐴2

1βˆ’π‘₯𝐴1 )π‘§βˆ’ 𝑧 1𝑧 2βˆ’ 𝑧1

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

( 1βˆ’π‘₯𝐴

1βˆ’ π‘₯𝐴1 )=( 1βˆ’π‘₯𝐴2

1βˆ’π‘₯𝐴1 )π‘§βˆ’ 𝑧 1𝑧 2βˆ’ 𝑧1

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴

𝑑𝑧𝑁 𝐴=

𝑐𝐷𝐴𝐡

(𝑧 2βˆ’ 𝑧1 )ln (1βˆ’ π‘₯𝐴 2

1βˆ’ π‘₯𝐴1)

*, i.e. xA1> xA2Η‚ i.e. z2> z1

𝑁 𝐴=𝑐𝐷𝐴𝐡

( 𝑧2βˆ’π‘§1)(π‘₯¿¿𝐡)𝑙𝑛(π‘₯𝐴1βˆ’π‘₯𝐴2)ΒΏ

The molar flux then becomes

OR in terms of the driving force Ξ”xA

(π‘₯¿¿𝐡)𝑙𝑛=π‘₯𝐡 2βˆ’π‘₯𝐡1

ln (π‘₯𝐡2

π‘₯𝐡1)

ΒΏ

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionTwo Reaction Types:

1. Homogeneous – occurs in the entire volume of the fluid

- appears in the generation term

2. Heterogeneous – occurs on a surface (catalyst)

- appears in the boundary condition

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionReaction taking place

2A B

1. Reactant A diffuses to the surface of the catalyst

2. Reaction occurs on the surface

3. Product B diffuses away from the surface

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionReaction taking place

2A B

Assumptions:

1. Isothermal2. A and B are ideal gases3. Reaction on the surface

is instantaneous4. Uni-directional transport

will be considered

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical Reaction

𝑑𝑁 𝐴

𝑑𝑧 =0

𝑁 𝐴=βˆ’π‘π·π΄π΅π‘‘π‘₯𝐴

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴+𝑁 𝐡)

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical Reaction

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

1βˆ’ 12π‘₯𝐴

𝑑π‘₯𝐴

𝑑𝑧

From stoichiometry,

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionSubstitution of NA into the differential equation

𝑑𝑑𝑧 (βˆ’

𝑐𝐷𝐴𝐡

1βˆ’ 12π‘₯𝐴

𝑑π‘₯𝐴

𝑑𝑧 )=0

Integration twice with respect to z,

βˆ’2 ln(1βˆ’ 12 π‘₯𝐴)=𝐢1 𝑧+𝐢2=βˆ’ΒΏ

B.C. 1: at z = 0, xA = xA0

B.C. 2: at z = Ξ΄, xA = 0

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionThe final equation is

1βˆ’ 12π‘₯𝐴=(1βˆ’ 1

2π‘₯𝐴 0)

(1βˆ’ 𝑧𝛿 )

And the molar flux of reactant through the film,

𝑁 𝐴=2𝑐𝐷 𝐴𝐡

𝛿 ln( 1

1βˆ’ 12π‘₯𝐴0

)

*local rate of reaction per unit of catalytic surface

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical Reaction

Reading Assignment

See analogous problem Example 18.3-1 of Transport Phenomena by Bird, Stewart and Lightfoot

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

1. Gas A dissolves in liquid B and diffuses into the liquid phase

2. An irreversible 1st order homogeneous reaction takes place

A + B AB

Assumption: AB is negligible in the solution (pseudobinary assumption)

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝑆𝑁 𝐴 Η€π‘§βˆ’π‘†π‘ 𝐴 ǀ𝑧+βˆ† π‘§βˆ’π‘˜1β€² β€² ′𝐢𝐴𝑆 βˆ† 𝑧=0

first order rate constant for homogeneous decomposition of AS cross sectional area of the liquid

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝑆𝑁 𝐴 Η€π‘§βˆ’π‘†π‘ 𝐴 ǀ𝑧+βˆ† π‘§βˆ’π‘˜1β€² β€² ′𝐢𝐴𝑆 βˆ† 𝑧=0

Dividing by SΞ”z and taking the limit as Ξ”z 0,

𝑑𝑁 𝐴

𝑑𝑧 +π‘˜1β€² β€² ′𝐢𝐴=0

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction𝑑𝑁 𝐴

𝑑𝑧 +π‘˜1β€² β€² ′𝐢𝐴=0

If concentration of A is small, then the total c is almost constant and

𝑁 𝐴=βˆ’π·π΄π΅π‘‘π‘π΄

𝑑𝑧Combining the two equations above

𝐷 𝐴𝐡𝑑2𝑐𝐴

𝑑 𝑧2βˆ’π‘˜1

β€² β€² ′𝐢𝐴=0

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝐷 𝐴𝐡𝑑2𝑐𝐴

𝑑 𝑧2βˆ’π‘˜1

β€² β€² ′𝐢𝐴=0

Multiplying the above equation by gives an equation with dimensionless variables

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝐷 𝐴𝐡𝑑2𝑐𝐴

𝑑 𝑧2βˆ’π‘˜1

β€² β€² ′𝐢𝐴=0

𝑑2Ξ“π‘‘πœ 2

βˆ’πœ™2Ξ“=0

Ξ“=𝑐𝐴

𝑐𝐴0,𝜁= 𝑧

𝐿 ,πœ™=βˆšπ‘˜β€² β€² ′𝐿2/𝐷𝐴𝐡

Thiele Modulus

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝑑2Ξ“π‘‘πœ 2

βˆ’πœ™2Ξ“=0

The general solution is

Ξ“=𝐢1 cosh (πœ™πœ )+𝐢2sinh (πœ™πœ )

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

Ξ“=𝐢1 cosh (πœ™πœ )+𝐢2sinh (πœ™πœ )

Ξ“=cosh (πœ™ ) cosh (πœ™πœ )βˆ’sinh (πœ™ ) sinh (πœ™πœ )

cosh (πœ™ )=cosh [Ο• (1βˆ’ΞΆ )]cosh (πœ™ )

Evaluating the constants,

Reverting to the original variables, 𝑐 𝐴

𝑐𝐴0=cosh [βˆšπ‘˜β€² β€² β€² 𝐿2𝐷 𝐴𝐡

(1βˆ’ 𝑧𝐿 )]

cosh (βˆšπ‘˜β€² β€² β€² 𝐿2𝐷 𝐴𝐡)

Concentration Profiles

III. Diffusion With a Homogeneous Chemical ReactionQuantities that might be asked for:

1. Average concentration in the liquid phase

𝑐𝐴 ,π‘Žπ‘£π‘”

𝑐 𝐴0=∫0

𝐿

(𝑐𝐴 ¿𝑐 𝐴0)𝑑𝑧

∫0

𝐿

𝑑𝑧= tanh πœ™πœ™

2. Molar flux at the plane z = 0

𝑁 𝐴𝑧 Η€ 𝑧=0=βˆ’π·π΄π΅π‘‘π‘ 𝐴

𝑑𝑧 ǀ𝑧=0=(𝑐𝐴0𝐷 𝐴𝐡

𝐿 )πœ™ tanh πœ™

Concentration Profiles

IV. Diffusion into a Falling Liquid Film (Gas Absorption)

Assumptions

1. Velocity field is unaffected by diffusion

2. A is slightly soluble in B3. Viscosity of the liquid is unaffected4. The penetration distance of A in B

will be small compared to the film thickness.

Concentration Profiles

IV. Diffusion into a Falling Liquid Film (Gas Absorption)

Recall: The velocity of a falling film

𝑣 𝑧 (π‘₯ )=π‘£π‘šπ‘Žπ‘₯ [1βˆ’( π‘₯𝛿 )2]

𝑣 𝑧(π‘₯ )=(𝜌 𝑔𝛿2 cos𝛼2πœ‡ )[1βˆ’(π‘₯𝛿 )2]

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

* CA is a function of both x and z

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

Dividing by WΞ”xΞ”z andletting Ξ”x 0 and Ξ”z 0,

πœ•π‘π΄π‘§

πœ• 𝑧 +πœ•π‘ 𝐴π‘₯

πœ• π‘₯ =0

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

πœ•π‘π΄π‘§

πœ• 𝑧 +πœ•π‘ 𝐴π‘₯

πœ• π‘₯ =0

𝑁 𝐴𝑧=βˆ’π·π΄π΅π‘‘π‘π΄

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴 𝑧+𝑁𝐡 𝑧)

The expressions for ,

Transport of A along the z direction is mainly by convection (bulk motion)

𝑁 𝐴𝑧 β‰ˆπ‘π΄π‘£π‘€=𝑐 𝐴𝑣𝑧 (π‘₯)

𝑁 𝐴= 𝐽 π΄βˆ—+𝑐𝐴𝑣𝑀Recall: 𝑣𝑀=π‘šπ‘œπ‘™π‘Žπ‘Ÿ π‘Žπ‘£π‘’π‘Ÿπ‘Žπ‘”π‘’π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

πœ•π‘π΄π‘§

πœ• 𝑧 +πœ•π‘ 𝐴π‘₯

πœ• π‘₯ =0

𝑁 𝐴π‘₯=βˆ’π· 𝐴𝐡𝑑𝑐 𝐴

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴 π‘₯+𝑁𝐡π‘₯)

The expressions for ,

𝑁 𝐴π‘₯ β‰ˆβˆ’π· 𝐴𝐡𝑑𝑐 𝐴

𝑑𝑧

Transport of A along the x direction is mainly by diffusion

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

πœ•π‘π΄π‘§

πœ• 𝑧 +πœ•π‘ 𝐴π‘₯

πœ• π‘₯ =0

Substituting the expressions for,

𝑣 𝑧(πœ•π‘π΄

πœ• 𝑧 )=𝐷 π΄π΅πœ•2𝑐 𝐴

πœ• π‘₯2

Substituting the expressions vz,

π‘£π‘šπ‘Žπ‘₯ [1βˆ’( π‘₯𝛿 )2]( πœ•π‘ 𝐴

πœ• 𝑧 )=𝐷 π΄π΅πœ•2𝑐𝐴

πœ• π‘₯2

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

π‘£π‘šπ‘Žπ‘₯ [1βˆ’( π‘₯𝛿 )2]( πœ•π‘π΄

πœ• 𝑧 )=𝐷 π΄π΅πœ•2𝑐𝐴

πœ• π‘₯2

Boundary conditions B.C. 1B.C. 2B.C. 3

B.C. 3

BUT we can replace B.C. 3 with

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

π‘£π‘šπ‘Žπ‘₯ [1βˆ’( π‘₯𝛿 )2]( πœ•π‘ 𝐴

πœ• 𝑧 )=𝐷 π΄π΅πœ•2𝑐𝐴

πœ• π‘₯2

or

where

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

𝑁 𝐴π‘₯ Η€ π‘₯=0=βˆ’π·π΄π΅πœ•π‘ 𝐴

πœ• π‘₯ Η€π‘₯=0=𝑐𝐴0√ π·π΄π΅π‘£π‘šπ‘Žπ‘₯

πœ‹ 𝑧

𝑐 𝐴

𝑐𝐴0=1βˆ’π‘’π‘Ÿπ‘“ π‘₯

√ 4𝐷 𝐴𝐡2 𝑧

π‘£π‘šπ‘Žπ‘₯

=π‘’π‘Ÿπ‘“π‘ π‘₯

√ 4𝐷𝐴𝐡2 𝑧

π‘£π‘šπ‘Žπ‘₯

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

Reading Assignment

See analogous problem Example 4.1-1 of Transport Phenomena by Bird, Stewart and Lightfoot

Concentration Profiles

Quantities that might be asked for:

1. Total molar flow of A across the surface at x = 0

IV. Diffusion into a Falling Liquid Film (Gas Absorption)

π‘Š 𝐴=∫0

π‘Š

∫0

𝐿

𝑁𝐴π‘₯ Η€π‘₯=0 𝑑𝑧𝑑𝑦=π‘Š 𝑐𝐴 0√ π·π΄π΅π‘£π‘šπ‘Žπ‘₯

πœ‹ ∫0

𝐿 1βˆšπ‘§

𝑑𝑧=𝑐𝐴0√𝐷 π΄π΅π‘£π‘šπ‘Žπ‘₯

πœ‹ 𝐿