Part II: Population Models

Post on 22-Feb-2016

25 views 0 download

Tags:

description

Swiss Federal Institute of Technology Lausanne, EPFL. Laboratory of Computational Neuroscience, LCN, CH 1015 Lausanne. Part II: Population Models. BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002 Chapters 6-9. - PowerPoint PPT Presentation

transcript

Part II: Population Models

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapters 6-9

Laboratory of Computational Neuroscience, LCN, CH 1015 LausanneSwiss Federal Institute of Technology Lausanne, EPFL

Chapter 6: Population Equations

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 6

10 000 neurons3 km wires

1mm

Signal:action potential (spike)

action potential

Spike Response Model

iuij

fjtt

Spike reception: EPSP

fjtt

Spike reception: EPSP

^itt

^itt

Spike emission: AP

fjtt ^

itt tui j f

ijw

tui Firing: tti ^

linear

threshold

Spike emission

Last spike of i All spikes, all neurons

Integrate-and-fire Model

iui

fjtt

Spike reception: EPSP

)(tRIuudtd

ii

tui Fire+reset

linear

threshold

Spike emission

resetI

j

escape process (fast noise)

parameter changes (slow noise)

stochastic spike arrival (diffusive noise)

Noise models

A B C

u(t)

noise

white(fast noise)

synapse(slow noise)

(Brunel et al., 2001)

t

t

dttt^

)')'(exp()( )¦( ^ttPI

: first passagetime problem

)¦( ^ttPI Interval distribution

^t ^t ^tt

Survivor functionescape rate

)(t

))(()( tuftescape rate stochastic reset

)¦( ^ttPI )( fttG

Interval distribution

Gaussian about ft

)(tRIudtdu

ii

noisy integration

ft

Homogeneous Population

populations of spiking neurons

I(t)

?

population dynamics? t

t

tNtttntA

);()(population

activity

Homogenous network (SRM)

NJwij

0

Spike reception: EPSP

Spike emission: AP

fjtt ^

itt tui j f

ijwLast spike of i All spikes, all neurons

fjtt

^itt

Synaptic coupling

potential

fullyconnected N >> 1

dsstIs )( external input

NJwij

0

fjtt ^

itt tui j f

ijwLast spike of i All spikes, all neuronspotential

dsstIs )( external input

dsstIs )( tui ^itt dsstAsJ )(0

potential

^tt ^| ttu )(thinput potential

fullyconnected

refractory potential

Homogenous network

Response to current pulse

Spike emission: AP

s

^itt

potential

^tt ^| ttu )(thinput potential

itt ˆ tui

Last spike of ipotential

dsstIsJ )(0 external input

dsstAs )( Population activity

All neurons receive the same input

Assumption of Stochastic spike arrival: network of exc. neurons, total spike arrival rate A(t)

)()(,

0 fk

fkrest tt

Cq

NJ

uuudtd

u

0u

EPSC

Synaptic current pulses

Homogeneous network (I&F)

)()( tIRuuudtd

rest

)()( 0 tAqJtI

Density equations

Stochastic spike arrival: network of exc. neurons, total spike arrival rate A(t)

)()()(,

0 f

feext

fk

fk

erest tt

Cq

JttCq

NJ

uuudtd

u

0u

EPSC

Synaptic current pulses

Density equation (stochastic spike arrival)

)()()( ttIRuuudtd

rest Langenvin equation,Ornstein Uhlenbeck process

fqJtAqJtI ext )()( 0

u

p(u)

Density equation (stochastic spike arrival)

u

Membrane potential density

)()(),()],()([),( 2

22

21 tAuutup

utupuV

utup

t r

Fokker-Planck

drift diffusionAqJuuV 0)(

kkk w22

spike arrival rate

source term at reset

A(t)=flux across threshold

utupu

tA ),()(

Integral equations

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

Population Dynamics

tdtAttSI

t

ˆ)ˆ(ˆ|1

Derived from normalization

Escape Noise (noisy threshold)

)(t

I&F with reset, constant input, exponential escape rate

Interval distribution

)ˆ(0 ttP )')ˆ'(exp()ˆ()ˆ( ̂t

t

dtttttttP

)exp())ˆ(()ˆ()ˆ(u

ttuttuftt

escape rate

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

Population Dynamics

Wilson-Cowan

population equation

escape process (fast noise)

Wilson-Cowan model

h(t)

^t t

)(t

))(()( thftescape rate

(i) noisy firing(ii) absolute refractory time

abs

))(()( thftA

population activity

t

t abs

dttA

]')'(1[

(iii) optional: temporal averaging

))(()()( thgtAtAdtd

abs

abs

ttfor

ttforthftuft

)ˆ(00

)ˆ())(())(()(

escape rate

escape process (fast noise)

Wilson-Cowan model

h(t)

^t t

)(t

(i) noisy firing(ii) absolute refractory time

abs

))(()( thftA

population activity

t

t abs

dttA

]')'(1[

abs

abs

ttfor

ttforthftuft

)ˆ(00

)ˆ())(())(()(

escape rate

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

Population activity in spiking neurons (an incomplete history)

1972 - Wilson&Cowan; Knight Amari

1992/93 - Abbott&vanVreeswijk Gerstner&vanHemmen

Treves et al.; Tsodyks et al. Bauer&Pawelzik

1997/98 - vanVreeswijk&Sompoolinsky Amit&Brunel Pham et al.; Senn et al.

1999/00 - Brunel&Hakim; Fusi&Mattia Nykamp&Tranchina Omurtag et al.

Fast transientsKnight (1972), Treves (1992,1997), Tsodyks&Sejnowski (1995)Gerstner (1998,2000), Brunel et al. (2001), Bethge et al. (2001)

Integral equation

Mean field equationsdensity (voltage, phase)

Heterogeneous netsstochastic connectivity

(Heterogeneous, non-spiking)

Chapter 7: Signal Transmission and Neuronal Coding

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 7

Coding Properties of Spiking Neuron ModelsCourse (Neural Networks and Biological Modeling) session 7 and 8

Laboratory of Computational Neuroscience, LCN, CH 1015 LausanneSwiss Federal Institute of Technology Lausanne, EPFL

PSTH(t)

500 trials

I(t)

forward correlationfluctuating input

I(t)reverse correlationProbability of

output spike ?

I(t) A(t)?0t

Theoretical Approach

- population dynamics

- response to single input spike (forward correlation)

- reverse correlations

A(t)

500 neurons

PSTH(t)

500 trials

I(t) I(t)

Population of neurons

h(t)

I(t) ?0t

))(()( thgtA

A(t)

A(t)

A(t)

))(()( tIgtA

))('),(()( tItIgtA

potential

A(t) ))(()()( thgtAtAdtd

t

tNtttntA

);()(population

activity

N neurons,- voltage threshold, (e.g. IF neurons)- same type (e.g., excitatory) ---> population response ?

Coding Properties of Spiking Neurons:

Laboratory of Computational Neuroscience, LCN, CH 1015 LausanneSwiss Federal Institute of Technology Lausanne, EPFL

- forward correlations- reverse correlations

1. Transients in Population Dynamics - rapid transmission2. Coding Properties

Example: noise-free

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

))ˆ(ˆ(ˆ| tTttttPI

)(tA )( TtA

''1

uh

Population Dynamics

I(t) h’>0h(t)

T(t^)

higher activity

noise-free

Theory of transients

)(tA )( TtA

''1

uh

I(t)h(t)

I(t) ?0t

potential dsstIs )( ^tt ^| ttu

)(thinput potential 0)(' ttth

)()( 00 ttAAtA A(t)

External input.No lateral coupling

Theory of transients A(t)

no noise

I(t)h(t)

noise-free

noise model B

slow noise

I(t)h(t)

(reset noise)

u

p(u)

u

Membrane potential density

Hypothetical experiment: voltage step

u

p(u)

Immediate responseVanishes linearly

Transients with noise

escape process (fast noise)

parameter changes (slow noise)

stochastic spike arrival (diffusive noise)

Noise models

A B C

u(t)

noise

white(fast noise)

synapse(slow noise)

(Brunel et al., 2001)

t

t

dttt^

)')'(exp()(

)¦( ^ttPI Interval distribution

^t ^t ^tt

Survivor functionescape rate

)(t

))(()( tuftescape rate stochastic reset

)¦( ^ttPI )( fttG

Interval distribution

Gaussian about ft

)(tRIudtdu

ii

noisy integration

ft

Transients with noise:Escape noise (noisy threshold)

linearize

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

)()( 0 tAAtA

Theory with noise A(t)

)()( 0 thhth

I(t)h(t)

0A

dsstIsth )()()(

sA 1

0 inverse mean interval

I

Llow noiselow noise: transient prop to h’

high noise: transient prop to h

h: input potential

high noise

Theory of transients A(t)

low noise

I(t)h(t)

noise-free

(escape noise/fast noise) noise model A

low noise

fast

noise model A

I(t)h(t)

(escape noise/fast noise)

high noise

slow

Transients with noise:Diffusive noise (stochastic spike arrival)

escape process (fast noise)

parameter changes (slow noise)

stochastic spike arrival (diffusive noise)

Noise models

A B C

u(t)

noise

white(fast noise)

synapse(slow noise)

(Brunel et al., 2001)

t

t

dttt^

)')'(exp()(

)¦( ^ttPI Interval distribution

^t ^t ^tt

Survivor functionescape rate

)(t

))(()( tuftescape rate stochastic reset

)¦( ^ttPI )( fttG

Interval distribution

Gaussian about ft

)(tRIudtdu

ii

noisy integration

ft

u

p(u)

Diffusive noiseu

Membrane potential density

p(u)

Hypothetical experiment: voltage step

Immediate responsevanishes quadratically

),(

)],()([

),(

2

22

21 tup

u

tupuAu

tupt

Fokker-Planck

u

p(u)

SLOW Diffusive noiseu

Membrane potential density

Hypothetical experiment: voltage step

Immediate responsevanishes linearly

p(u)

Signal transmission in populations of neurons

Connections4000 external4000 within excitatory1000 within inhibitory

Population- 50 000 neurons- 20 percent inhibitory- randomly connected

-low rate-high rate

input

Population- 50 000 neurons- 20 percent inhibitory- randomly connected

Signal transmission in populations of neurons

100 200time [ms]

Neuron # 32374

50

u [mV]

100

0

10A [Hz]

Neu

ron

#

32340

32440

100 200time [ms]50

-low rate-high rate

input

Signal transmission - theory

- no noise

- slow noise (noise in parameters)

- strong stimulus

- fast noise (escape noise) prop. h(t) (potential)

prop. h’(t) (current)

See also: Knight (1972), Brunel et al. (2001)

fast

slow

Transients with noise: relation to experiments

Experiments to transients A(t)

V1 - transient response

V4 - transient response

Marsalek et al., 1997

delayed by 64 ms

delayed by 90 ms

V1 - single neuron PSTH

stimulus switched on

Experiments

input A(t)

A(t)

A(t)

A(t)

See also: Diesmann et al.

How fast is neuronal signal processing?

animal -- no animalSimon ThorpeNature, 1996

Visual processing Memory/association Output/movement

eye

Reaction time experiment

How fast is neuronal signal processing?

animal -- no animalSimon ThorpeNature, 1996

Reaction time

Reaction time

# ofimages

400 msVisual processing Memory/association Output/movement

Recognition time 150ms

eye

Coding properties of spiking neurons

Coding properties of spiking neurons

- response to single input spike

(forward correlations)

A(t)

500 neurons

PSTH(t)

500 trials

I(t)I(t)

Coding properties of spiking neurons

- response to single input spike

(forward correlations)

I(t) Spike ?Two simple arguments1)

2)

Experiments: Fetz and Gustafsson, 1983 Poliakov et al. 1997

(Moore et al., 1970)

PSTH=EPSP

(Kirkwood and Sears, 1978)

PSTH=EPSP’

Forward-Correlation Experiments A(t)

Poliakov et al., 1997

I(t) PSTH(t)

1000 repetitionsnoise

high noise low noiseprop. EPSP prop. EPSP

ddt

^^^ )(|)( dttAttPtA I

t

Population Dynamics

)()( 0 thhth h: input potential dsstIsth )()()(

A(t) PSTH(t)I(t)I(t)

full theory

linear theory

Forward-Correlation Experiments A(t)

Theory: Herrmann and Gerstner, 2001

high noise low noisePoliakov et al., 1997

high noise low noise

blue: full theoryred: linearized theory

blue: full theoryred: linearized theory

Forward-Correlation Experiments A(t)

Poliakov et al., 1997

I(t) PSTH(t)

1000 repetitionsnoise

high noise low noiseprop. EPSP prop. EPSP

ddt

prop. EPSP

prop. EPSPddt

Reverse Correlations

Laboratory of Computational Neuroscience, LCN, CH 1015 LausanneSwiss Federal Institute of Technology Lausanne, EPFL

fluctuating input

I(t)

Reverse-Correlation Experiments

after 1000 spikes

)(tI

)()( 0 thhth h: input potential dsstIsth )()()(

Linear Theory

Fourier Transform

)(~)(~)(~ IGA

0

)()()( dsstIsGtA

Inverse Fourier Transform

)(~1)(~)(~

)(~ 0

PLAiG

Signal transmissionI(t) A(t)

)()()(

fIfAfG T=1/f

(escape noise/fast noise) noise model A

low noise

high noise

noise model B (reset noise/slow noise)

high noiseno cut-off

low noise

Reverse-Correlation Experiments (simulations)

after 1000 spikes

0

)()()( dsstIsGtA

theory:G(-s)

)(tI

after 25000 spikes

Laboratory of Computational Neuroscience, EPFL, CH 1015 Lausanne

Coding Properties of spiking neurons

I(t)

?

- spike dynamics -> population dynamics- noise is important - fast neurons for slow noise - slow neurons for fast noise

- implications for - role of spontaneous activity - rapid signal transmission - neural coding - Hebbian learning

Chapter 8: Oscillations and Synchrony

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 8

Stability of Asynchronous State

Stability of Asynchronous State

Search for bifurcation points

linearize

^^^ )(|)( dttAttPtA I

t

)()( 0 tAAtA )()( 0 thhth dsstAsJth )()()(

h: input potential

A(t)

ttieAtA 1)(0

fully connected coupling J/N

Stability of Asynchronous State A(t)

delayperiod

)()( sess0 for

stable0

03

02

noise

T

)(s

s

)(s

Stability of Asynchronous State s

)(s

ms0.1

ms2.1

4.1

ms0.2

ms0.3

ms4.0

06

05

04

03

02

T 2

0

Chapter 9: Spatially structured networks

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 9

Continuous Networks

)(tAi

Several populations

i k

Continuum

)(),( AtA

Continuum: stationary profile