Peroxide Dispersions in HCR Silicone Compounding · Advantages of Peroxide Dispersions in HCR...

Post on 15-Apr-2018

219 views 5 download

transcript

 

 

 

 

 

 

Advantages of Peroxide Dispersions in HCR Silicone 

Compounding 

 

 

 

By 

Erick Sharp (Speaker) – ACE Products & Consulting LLC, Uniontown, OH 

 

 

Presented at the  

2016 ACS International Elastomer Conference   

October 11th – 13Th 2016 

Pittsburg, PA 

 

 

Abstract 

 

A multi‐factor, general factorial designed experiment was performed to 

investigate the processing of HCR silicone molding and extrusion compounds with 

silicone bound peroxide dispersions.  The factors selected for experiments are 

peroxide form and type of peroxide.  This study measured dependent variables of 

a) MDR properties, b) dispersion and c) physical properties.     

 

 

Classification of “Silicone Peroxide Dispersion” 

 

 

Experiment 

 

Equipment 

All trials were mixed on a 5 liter tilt body lab mixer with tangential rotor configuration and 

milled on a 6x12 lab mill. 

                  

 

Peroxides Evaluated 

DBPH ‐ 2,5‐dimethyl‐2,5‐di(t‐butylperoxy)hexane 

VULCUP ‐ T‐Butylperoxy‐Diisopropyl Benzene 

DICUP ‐ Dicumyl Peroxide 

 

 

Formulation 

Compound A 

100 PHR     40 Duro Silicone Base 

2 PHR      Peroxide 

 

Recipe B 

100 PHR     40 Duro Silicone Base 

100 PHR    10 Micron Ground Quartz 

2 PHR      Peroxide 

 

 

 

 

Mix Procedure 

Compound A 

1. Pass base through mill ten times 

2. Add peroxide  3. Blend till dispersed 

Compound B 

1. Pass base / ground quartz masterbatch 10 times 

2. Add peroxide 3. Blend till dispersed  

 

Measurable Values 

 

a. MDR 

a. Parameters  

i. 6’ at 355°F   

b. Values  

i. ML 

ii. TS2 

iii. Tc50 

iv. Tc90 

v. MH 

b. Physical Properties  

a. Parameters 

i. Prepped 6’ at 355°F   

ii. Post cured 4 hours at 400⁰F 

b. Values 

i. Tensile  

ii. Elongation 

iii. 100% Modulus 

iv. 200% Modulus  

v. Tear die b 

vi. Compression Set (method B/ Plied) 

 

 

c. Dispersion 

a. Visual 

 

Results 

Compound (A) ‐ DBPH 

It took 35% additional time on the mill to incorporate the powder DBPH versus the DBPH in 

silicone binder.  This is due to the difficulty to break down the powder agglomerates.   

The T90 on the rheology data was slightly quicker on DPBH‐S then the DBPH –P.  This is likely 

due to the pre‐dispersed peroxide incorporating better with the polymer.   

The DBPH‐S had a 9.14% improvement on the DBPH‐P on compression set.   

 

 

 

ML Ts2 Tc90

Compound A ‐ Rheology DBPH‐P 0.88 0.40 0.84

Compound A ‐ Rheology DBPH‐S 0.85 0.40 0.80

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000 Compound A ‐ DBPH Rheology

 

 

 

 

 

MH

Compound A ‐ Rheology DBPH‐P

6.54

Compound A ‐ Rheology DBPH‐S

6.23

6.0506.1006.1506.2006.2506.3006.3506.4006.4506.5006.5506.600

Compound A ‐ DBPH MH

Durometer, ShoreA

Tensile, psi Elongation, %100% Modulus,

psi200% Modulus,

psiTear Die B, lbs

DBPH‐S 78 958.38 555.99 101.31 182.85 65.6

DICUP‐P 49 495.64 354.99 110.05 206.23 72.3

78

958.38

555.99

101.31

182.85

65.649

495.64

354.99

110.05

206.23

72.3

Compound A Durometer & Tear

 

 

 

 

 

 

 

 

 

Tensile, psi Elongation, % 100% Modulus, psi 200% Modulus, psi

DBPH‐P 958.5 566.71 99.787 183.53

DBPH‐S 958.38 555.99 101.31 182.85

Compound A ‐ DBPH  (Tensile, Elongation and Modulus)

53.0

54.0

55.0

56.0

57.0

58.0

59.0

60.0

61.0

DBPH‐P DBPH‐S

DBPH‐P DBPH‐S

Series1 61.0 55.7

Compound A ‐ Compression Set 

 

 

Compound (A) DICUP 

 

The DICUP –P required 50% additional time on the mill in order to achieve proper dispersion.  

This was due to the larger particles of the powder not breaking down.   

The rheology data between the DICUP‐P and DICUP‐S was within the margin of error other than 

the T90 and ML.  The T90 was .12 quicker on the DICUP‐S then the DICUP‐P.  This is likely due to 

better incorporation with the polymer when using the pre‐dispersed silicone binder.  The ML on 

the DICUP‐P was lower than the DUCP‐S.  This is likely due to the extra mill passes it received.   

The DICUP‐S had a 46% improvement in tensile properties over the DICUP‐P.  Additionally it 

tested out with a 30% greater elongation over the powder version.  The DICUP‐P did render 

13% better tear properties then the DICUP‐S.  Compression set results between the two were 

within the margin of error.   

 

 

 

ML Ts2 Tc90 MH

Compound A ‐ Rheology DICUP‐P 0.91 0.40 0.89 6.69

Compound A ‐ Rheology DICUP‐S 1.07 0.38 0.77 6.61

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Compound A ‐ Dicup Rheology

 

 

 

 

 

 

Durometer, ShoreA

Tensile, psi Elongation, % 100% Modulus, psi 200% Modulus, psi Tear Die B, lbs

DICUP‐P 49 495.64 354.99 110.05 206.23 72.3

DICUP‐S 49 913.35 505.58 108.23 201.79 62.7

49

495.64

354.99

110.05

206.23

72.349

913.35

505.58

108.23

201.79

62.7

Compound A Durometer & Tear

Tensile, psi Elongation, % 100% Modulus, psi 200% Modulus, psi

DICUP‐P 495.64 354.99 110.05 206.23

DICUP‐S 913.35 505.58 108.23 201.79

Compound A ‐ Dicup (Tensile, Elongation and Modulus)

 

 

 

 

 

Compound (A) VULCUP 

The VULCUP‐P required 30% additional passes on the mill in order to incorporate.  The powder 

was platy and had a large particle size.   

The ML was 48% higher on the DICUP‐P then the DICUP‐S.  This is likely due to the large particle 

size on the DICUP‐P.  Dramatic increases in ML can result in crepe hardening, poor shelf‐life and 

difficulty in processing.  The DICUP‐S also had a .61s quicker T90.  This is likely due to the better 

incorporation of the peroxide with the polymer.   

The DICUP‐S had a 14% improvement in tensile properties over the DICUP‐P.  Additionally, it 

rendered 25% better elongation. 

Compression set improved by 24% in comparison to the DICUP‐P 

 

44.5

45.0

45.5

46.0

46.5

47.0

DICUP‐P DICUP‐S

DICUP‐P DICUP‐S

Series1 45.5 46.9

Compound A ‐ Compression Set 

 

 

 

 

 

 

ML Ts2 Tc90 MH

Compound A ‐ Rheology VULCUP‐P 1.99 0.35 1.53 7.51

Compound A ‐ Rheology VULCUP‐S 1.03 0.39 0.92 6.56

0

1

2

3

4

5

6

7

8

Compound A ‐ Vulcup Rheology

Durometer,Shore A

Tensile, psi Elongation, %100% Modulus,

psi200% Modulus,

psiTear Die B, lbs

VULCUP‐P 54 652.72 328.19 138.15 310.16 42.1

VULCUP‐S 52 755.38 435.91 118.56 228.62 64.6

54

652.72

328.19

138.15

310.16

42.152

755.38

435.91

118.56

228.62

64.6

Compound A Durometer & Tear

 

 

 

 

 

 

 

 

Tensile, psi Elongation, % 100% Modulus, psi 200% Modulus, psi

VULCUP‐P 652.72 328.19 138.15 310.16

VULCUP‐S 755.38 435.91 118.56 228.62

Compound A ‐ Vulcup (Tensile, Elongation and Modulus)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

VULCUP‐P VULCUP‐S

VULCUP‐P VULCUP‐S

Series1 56.6 43.2

Compound A ‐ Compression Set 

 

 

 

Compound (B) DBPH 

Incorporating the DBPH‐P into Compound (B) was more difficult than incorporating it into 

Compound (A).  The additional filler loading required extra passes in the mill to get the peroxide 

into the matrix.  The DBPH‐P required 40% additional blends over the DBPH‐S.   

The ML value on the DBPH‐P was much higher than the DBPH‐S gave.  While the DBPH‐P had 

more time on the mill, it had an overall higher powder content and less polymer content then 

the DBPH‐S batch.  All other rheology results were within standard deviation.   

The DBPH‐P gave 10% better tear while the DBPH‐S gave 10% better compression set.  All other 

physical properties were closely similar.   

 

 

 

 

DBPH‐P DBPH‐S

ML 2.72 0.94

Ts2 0.33 0.28

Tc50 0.39 0.38

Tc90 0.73 0.79

MH 9.58 9.42

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Compound B ‐Rheology

 

 

 

 

 

 

 

 

Durometer, Shore A Tear Die B, lbs

DBPH‐P 62 80.7

DBPH‐S 62 73.0

62

80.7

62

73.0

Compound B ‐ Durometer & Tear

Tensile, psi Elongation, % 100% Modulus, psi 200% Modulus, psi

DBPH‐P 852.66 413.06 227.13 501.28

DBPH‐S 839.04 415.68 212.71 471.42

Compound B ‐ Tensile & Elongation

 

 

 

 

 

Compound (B) DICUP 

Similar to the DBPH‐P, the DICUP‐P required additional mill work to disperse into Compound (B) 

than what was required on Compound (A).  The more highly filled a compound is the more 

difficult it becomes to incorporate powder peroxides into the matrix.  The DICUP‐P required 

double the mill blending time than the DICUP‐S.   

Tensile on the DICUP‐S improved by 21% over the DICUP‐P.  Consequently, the tear on the 

DICUP‐S was 16% lower then the tear on the DICUP‐P.  Elongation was also 8% lower on the 

DICUP‐S.  Compression set was improved 10% with the DICUP‐S peroxide.   

 

49.0

49.5

50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

54.0

DBPH‐P DBPH‐S

DBPH‐P DBPH‐S

Series1 54.0 50.9

Compound B ‐ Compression Set

 

 

 

 

 

 

DICUP‐P DICUP‐S

ML 3.06 3.18

Ts2 0.33 0.33

Tc50 0.38 0.38

Tc90 0.71 0.83

MH 10.41 9.91

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Compound B ‐Rheology

Durometer, Shore A Tear Die B, lbs

DICUP‐P 64 71.7

DICUP‐S 63 59.9

64

71.7

63

59.9

Compound B ‐ Durometer & Tear

 

 

 

 

 

 

Compound (B) VULCUP 

Similar to all the other powder peroxides there was considerable difficulty getting the material 

worked into the compound.  The VULCUP‐P required double the mill blending time versus the 

VULCUP‐S.  Of the powder peroxides, the VULCUP‐P was the most difficult to blend in.   

Tensile, psi Elongation, % 100% Modulus, psi 200% Modulus, psi

DICUP‐P 593.78 218.5 260.99 551.38

DICUP‐S 752.45 311.68 239.32 539.55

Compound B ‐ Tensile & Elongation

41.0

42.0

43.0

44.0

45.0

46.0

47.0

48.0

DICUP‐P DICUP‐S

DICUP‐P DICUP‐S

Series1 47.2 43.2

Compound B ‐ Compression Set

 

 

The ML of the VULCUP‐P was much higher than the value for the VULCUP‐S.  This likely 

correlates with the processing difficulty we saw on the mill.  The silicone carrying the VULCUP‐S 

helped wet it out into the mixture, which improved processability and reduced the ML.  The T90 

on the VULCUP‐P was nearly half the rate of the VULCUP‐S.  The VULCUP‐P acted as though 

there was inhibition effecting the cure rate.  

The VULCUP‐S had a slight decline in physical properties in comparison to the VULCUP‐P other 

than tear.  The VULCUP‐S had a 30% improvement in tear properties over the VULCUP‐P.  

Compression set between the two were similar.   

 

 

 

 

VULCUP‐P VULCUP‐S

ML 4.66 0.86

Ts2 0.32 0.29

Tc50 0.40 0.40

Tc90 2.15 0.92

MH 11.64 10.89

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Compound B ‐Rheology

 

 

 

 

 

 

Durometer, Shore A Tear Die B, lbs

VULCUP‐P 65 49.1

VULCUP‐S 65 69.6

65

49.1

6569.6

Compound B ‐ Durometer & Tear

Tensile, psi Elongation, % 100% Modulus, psi 200% Modulus, psi

VULCUP‐P 799.11 292.1 326.82 652.78

VULCUP‐S 759.35 284.34 282.66 596.55

Compound B ‐ Tensile & Elongation

 

 

 

 

 

 

Conclusions  

The powder peroxide dispersions were more difficult to disperse into the compounds.  This 

difficulty magnified as the fill increased in the compounds.  Longer mill blends were the result 

of this issue.  All the powder dispersions took longer to mix in comparison to their silicone 

dispersed alternatives.   

The fact that we added the peroxides in a secondary mill blend allowed for discretionary 

blending of the peroxides to ensure proper dispersion.  When mixing on a mixer, it is more 

difficult to measure the dispersion of the powder peroxides.  Some mixing technologies have 

less shear than others.  This can also effect the ability to break down the powder agglomerates 

and disperse them into the low viscosity silicone polymer.  Worn out mixers or poor mixer 

tolerances will only hinder the ability to blend in powder peroxides.   

We recommend blending powder peroxides into the polymer before large filler additions if 

possible in order to ensure good polymer interaction.  This allows the peroxide to work into the 

polymer before all the available sites are consumed with filler.  Being that silicone dispersed 

peroxides are already in a polymer matrix, this makes it easier to work into any compound 

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

VULCUP‐P VULCUP‐S

VULCUP‐P VULCUP‐S

Series1 56.2 52.2

Compound B ‐ Compression Set

 

 

without having to find available polymer sites.  Having the peroxide in a silicone binder ensures 

there is always available polymer with which to link.  

The DICUP showed the greatest gain in physical properties when using the silicone binder.  All 

others evaluated showed minimal difference either way in general physical properties.  

Compression set was always improved or equal when using the silicone bound dispersions.   

Silicone bound peroxide dispersions processed better than their powder equivalents.  There 

was less inhibition in cure with the silicone bound dispersions.  Other than in DICUP, there was 

little difference in physical properties.  The silicone bound dispersions provided measureable 

improvement in compression set.  Silicone bound peroxide dispersion do provide several 

advantages over their powder equivalents.   

 

Acknowledgements  

A special thanks to Polychem Dispersions for use of their laboratory resources to perform this 

study.  

A special thanks to HB Chemical, Lianda and Graphic Arts for contributing raw materials for this 

study.