PMCE Structural Dynamics - Home - StructuresPro

Post on 31-Oct-2021

8 views 0 download

transcript

CE 809 - Structural Dynamics

Lecture 5: Response of SDF Systems to Impulse Loading

Semester – Fall 2020

Dr. Fawad A. Najam

Department of Structural Engineering

NUST Institute of Civil Engineering (NICE)

National University of Sciences and Technology (NUST)

H-12 Islamabad, Pakistan

Cell: 92-334-5192533, Email: fawad@nice.nust.edu.pk

Prof. Dr. Pennung Warnitchai

Head, Department of Civil and Infrastructure Engineering

School of Engineering and Technology (SET)

Asian Institute of Technology (AIT)

Bangkok, Thailand

2

Impulse Loading

β€’ Impulsive forces, shock loads, short duration loads.

β€’ Impact, blast wave, explosion

β€’ Sudden stop/break of trucks & automobiles & travelling cranes

The study of impulse response is also important for the analysis of response to arbitrary

loadings.

3

Response to Impulse Loading

Response

𝑝 : Step Impulse

π‘π‘œ

𝑇

𝑑No Load

Decayed

Oscillation

βˆ†π‘‘

Phase I: Loading Phase

Phase II: Free Vibration Phase

(𝑑)

4

Response to Impulse Loading

Impulse Force Magnitude = π‘π‘œ, start at 𝑑 = 0, Duration = Δ𝑑, where Δ𝑑/𝑇 << 1

Initial at-rest: 𝑒 = 0, 𝑒 = 0Structure (0) (0)

5

Response to Impulse Loading

Phase 1:

The particular solution to a step

loading is simply a static deflection:

π‘π‘œ

π‘‘βˆ†π‘‘

𝑝 𝑑

𝑑 ……….. (1)𝑒𝑝 =π‘π‘œπ‘˜

6

Response to Impulse Loading

This solution satisfies the equation of motion:

𝑒𝑝 = 0

𝑒𝑝 = 0

Substitute the above relations into the equation of

motion:

Phase 1:

0 + 0 + π‘˜π‘0π‘˜

= 𝑝0

𝑒𝑝 =π‘π‘œπ‘˜

𝑑

𝑑

𝑑

π‘š 𝑒𝑝 + 𝑐 𝑒𝑝 + π‘˜ 𝑒𝑝 = 𝑝0𝑑 𝑑 𝑑

7

Response to Impulse Loading

A general solution:

𝑒 = 𝑒𝑝 + π‘’β„Ž

𝑒 =π‘π‘œπ‘˜+ π‘’βˆ’πœ‰ πœ” 𝑑 𝐴 sin πœ”π·π‘‘ + 𝐡 cos πœ”π·π‘‘

Where

𝐴 and 𝐡 are determined such that the at-rest initial conditions are satisfied.

Phase 1:

……….. (2)

(𝑑) (𝑑) (𝑑)

𝑑

8

Response to Impulse Loading

𝑒 =π‘π‘œπ‘˜+ 𝐡 = 0

𝑒 = πœ”π·π΄ βˆ’ πœ‰πœ”π΅ = 0

So we obtain:

Phase 1:

𝐡 = βˆ’π‘π‘œπ‘˜

𝐴 =πœ‰πœ”π΅

πœ”π·

……….. (3)

0

0

𝑒 =π‘π‘œπ‘˜+ π‘’βˆ’πœ‰ πœ” 𝑑 βˆ’

πœ‰ πœ”

πœ”π·

π‘π‘œπ‘˜sin πœ”π·π‘‘ βˆ’

π‘π‘œπ‘˜cos πœ”π·π‘‘

……….. (4)𝑑

(valid in the range 0 < 𝑑 < Δ𝑑)

9

Response to Impulse Loading

Due to fact that 0 < 𝑑 < Δ𝑑 and Δ𝑑/𝑇 << 1 and πœ‰ << 1

𝑒 β‰ˆπ‘π‘œπ‘˜βˆ’π‘π‘œπ‘˜cos πœ”π‘‘ β‰ˆ

π‘π‘œπ‘˜

1 βˆ’ cos πœ”π‘‘

Phase 1:

……….. (5)

Equation (5) shows the approximate response during the loading phase.

𝑑

𝑒 =π‘π‘œπ‘˜+ π‘’βˆ’πœ‰ πœ” 𝑑 βˆ’

πœ‰ πœ”

πœ”π·

π‘π‘œπ‘˜sin πœ”π·π‘‘ βˆ’

π‘π‘œπ‘˜cos πœ”π·π‘‘

……….. (4)𝑑

10

Response to Impulse Loading

Phase 2:

𝑑

𝑑 = βˆ†π‘‘

𝑑 = 0Phase II

No Load: Free vibration response

depends on the initial conditions at

𝑑 = βˆ†π‘‘

11

Response to Impulse Loading

Phase 2:

𝑒 =π‘π‘œπ‘˜

1 βˆ’ cos πœ”π‘‘π‘‘

𝑒 =π‘π‘œπ‘˜

πœ” sin πœ”π‘‘π‘‘

𝑒 =π‘π‘œπ‘˜

πœ” sin πœ” Δ𝑑 ……….. (6)βˆ†π‘‘

𝑒 =π‘π‘œπ‘˜

1 βˆ’ cos πœ” Ξ”π‘‘βˆ†π‘‘

12

Response to Impulse Loading

Phase 2:

Employing Tylor’s expansion:

sin πœƒ = πœƒ βˆ’πœƒ3

3!+πœƒ5

5!……

cos πœƒ = 1 βˆ’πœƒ2

2!+πœƒ4

4!……

For small πœƒ, by neglecting the second order term and higher terms, we get

sin πœƒ β‰ˆ πœƒ, cos πœƒ β‰ˆ 1 ……….. (7)

13

Response to Impulse Loading

Phase 2:

Introducing this approximation in Equation (7) into Equation (6), we obtain

𝑒 =π‘π‘œπ‘˜

1 βˆ’ cos πœ” Δ𝑑 β‰… 0

𝑒 =π‘π‘œπ‘˜

πœ” sin πœ” Δ𝑑 β‰…π‘π‘œ πœ”

2 βˆ†π‘‘

π‘˜=π‘π‘œ βˆ†π‘‘

π‘š

Note that π‘π‘œ βˆ†π‘‘ is an impulse.

Equation (8) says that impulse β‰ˆ the change in momentum (of the mass)

The impulse introduces β€œmomentum” into a structure but the duration of impulse is so

short that the displacement has not been developed yet.

……….. (8)

Δ𝑑

Δ𝑑

14

Response to Impulse Loading

Using the Equation (8) as the initial conditions for free vibration in Phase 2,

𝑒 = π‘’βˆ’πœ‰ πœ” (π‘‘βˆ’βˆ†π‘‘) 𝑒

πœ”π·sin πœ”π· 𝑑 βˆ’ βˆ†π‘‘

Since βˆ†π‘‘/𝑑 << 1 , it is justified to let 𝑑 βˆ’ βˆ†π‘‘ β‰ˆ 𝑑, that is

𝑒 β‰ˆ π‘’βˆ’πœ‰ πœ” π‘‘π‘π‘œ Δ𝑑

π‘š πœ”π·sin(πœ”π·π‘‘)

Equation (10) will be used when we analyze the response to arbitrary loading in the next

section.

Phase 2 (t > βˆ†π’• ):

……….. (9)

……….. (10)

π‘‘βˆ†π‘‘

𝑑

15

Response to Impulse Loading

π‘’βˆ’πœ‰ πœ” π‘‘π‘π‘œ Δ𝑑

π‘š πœ”π·sin(πœ”π·π‘‘)

π‘π‘œ

π‘‘βˆ†π‘‘

Total Response

Thank you