Probabilistic & Source Characterization Techniques in AERMOD Compliance

Post on 23-Jan-2018

322 views 1 download

transcript

www.cppwind.comwww.cppwind.com

Probabilistic & Source Characterization Techniques in AERMOD ComplianceEUEC 2016 – San Diego, CAFebruary 4, 2016June 24, 2015Sergio A. Guerra, Ph.D. – CPP Inc.Ron Petersen, Ph.D., CCM – CPP Inc.

www.cppwind.comwww.cppwind.com

Outline• Building Downwash Limitations in BPIP/PRIME• AERMOD’s Temporal Mismatch Limitation• Advanced Modeling Techniques to Overcome these Limitations 

www.cppwind.comwww.cppwind.com

Limitations of Building Downwash in BPIP/PRIME

www.cppwind.comwww.cppwind.com

BPIPBuilding Geometry

Standard AERMOD Modeling Process

Meteorological Data

Terrain Data

AERMET

AERMAP

Operating ParametersOperating Parameters AERMOD Compliance

www.cppwind.comwww.cppwind.com

Building Dimension Inputs & BPIP• BPIP uses building footprints and tier heights • Combines building/structures• All structures become one single solid rectangle for each wind 

direction and each stack• BPIP dimensions may not characterize the source accurately and may 

result in unreasonably high predictions

www.cppwind.comwww.cppwind.com

PRIME AERMOD’s Building Downwash Algorithm

• Used EPA wind tunnel data base and past literature

• Developed analytical equations for cavity height, reattachment, streamline angle, wind speed and turbulence

• Developed for specific building dimensions

• When buildings outside of these dimensions, theory falls apart

www.cppwind.comwww.cppwind.com

Schulman, 2012‐ Building Width Issue

Hb=20mL = 45 mW = 220 mD = 2.5 mVe = 20 m/s

Error likely due to- Wake height calculation & large R- Start of enhanced turbulent at large R

W/H>4

www.cppwind.comwww.cppwind.com

Schuman, 2012‐ Building Length Issue

Likely due to enhanced

turbulence up to wake boundary:

www.cppwind.comwww.cppwind.com

BPIP Diagnostic Toolhttp://bit.do/cppwind‐BPIPDiagnostic

Likely Overprediction Factor for each Flow VectorSource 1

www.cppwind.comwww.cppwind.com

ComplianceCompliance

CPP’s EBDCPP’s EBD

BPIP iagnosticBPIP DiagnosticToolBuilding Geometry

Meteorological Data

Terrain Data

AERMET

AERMAP

Operating ParametersOperating Parameters AERMODOth

er In

puts

Bui

ldin

g In

puts

BPIP Diagnostic Tool

www.cppwind.comwww.cppwind.com

• Equivalent Building Dimensions (EBDs) are the dimensions (height, width, length and location) that are input into AERMOD in place of BPIP dimensions to more accurately predict building wake effects

• Guidance originally developed when ISC was the preferred model –– EPA, 1994. Wind Tunnel Modeling Demonstration to Determine Equivalent 

Building Dimensions for the Cape Industries Facility, Wilmington, North Carolina. Joseph A. Tikvart Memorandum, dated July 25, 1994. U.S. Environmental Protection Agency, Research Triangle Park, NC

• Determined using wind tunnel modeling

What is EBD?

www.cppwind.comwww.cppwind.com

Basic Wind Tunnel Modeling Methodology

Obtain source/site dataConstruct scale model – 3D PrintingInstall model in wind tunnel and measure Cmax versus X

www.cppwind.comwww.cppwind.com

Measure Ground‐level Concentrations

Data taken until good fit and max obtained

Automated Max GL Concentration Mapper

www.cppwind.comwww.cppwind.com

Measure Ground‐level Concentrations With Site Structures Present

Tracer from stack

Max ground-level concentrations measured versus x

www.cppwind.comwww.cppwind.com

Measure Ground‐level Concentrations with Various EBD in Place of Site Structures

Tracer from stack

Max ground-level concentrations measured versus x

www.cppwind.comwww.cppwind.com

Measure Ground‐level Concentrations with no Structures

Tracer from stack

Max ground-level concentrations measured versus x

www.cppwind.comwww.cppwind.com

EBD MethodSpecify Wind Tunnel Determined EBD that Matches Dispersion with Site Structures Present

Wind Tunnel EBD much smaller than actual building

No building works best for this case

Site Structures in Wind TunnelEBD in Wind Tunnel

www.cppwind.comwww.cppwind.com

Summary of Approved Projects• Studies conducted and approved using original guidance for ISC 

applications– Amoco Whiting Refinery, Region 5, 1990– Public Service Electric & Gas, Region 2, 1993– Cape Industries, Region 4, 1993– Cambridge Electric Plant, Region 1, 1993– District Energy,  Region 5, 1993– Hoechst Celanese  Celco Plant, Region 3, 1994– Pleasants Power, Region 3, 2002

• Studies conducted using original guidance for AERMOD/PRIME applications – Hawaiian Electric (Approved), Region 9, 1998– Mirant Power Station (Approved), Region 3, 2006– Cheswick Power Plant (Approved), Region 3, 2006– Radback Energy (Protocol Approved), Region IX, 2010

• After 2011 EPA Clearinghouse Memo– Chevron 1 (Study Approved), Region 4, 2012– Chevron 2 (Study Approved), Region 4, 2013– Chevron 3 (In process), Region 4, 2015

www.cppwind.comwww.cppwind.com

0.00

0.25

0.50

0.75

1.00

BPIP EBD

Predicted Concentrations

FACTOR of 2 to 3.5 reduction when EBD used

Lattice Structures

Typical AERMOD Predictions for Refinery Structures with  BPIP and EBD Inputs

www.cppwind.comwww.cppwind.com

0.00

0.25

0.50

0.75

1.00

BPIP EBD

Predicted Concentrations

FACTOR of 4 to 8 reduction when EBD used

Short building with a large foot print

Typical AERMOD Predictions for Buildings with Large Footprint, BPIP and EBD Inputs

www.cppwind.comwww.cppwind.com

0.00

0.25

0.50

0.75

1.00

BPIP EBD

Predicted Concentrations

FACTOR of 2 to 5reduction when EBD used

Very Wide/Narrow Buildings

Typical AERMOD Predictions for Very Wide/Narrow Buildings with BPIP and EBD

www.cppwind.comwww.cppwind.com

AERMOD’s Temporal Mismatch

www.cppwind.comwww.cppwind.com

Model’s AccuracyAppendix W: 9.1.2 Studies of Model Accuracy a. A number of studies have been conducted to examine model accuracy, 

particularly with respect to the reliability of short‐term concentrations required for ambient standard and increment evaluations. The results of these studies are not surprising. Basically, they confirm what expert atmospheric scientists have said for some time: (1) Models are more reliable for estimating longer time‐averaged concentrations than for estimating short‐term concentrations at specific locations; and (2) the models are reasonably reliable in estimating the magnitude of highest concentrations occurring sometime, somewhere within an area. For example, errors in highest estimated concentrations of ± 10 to 40 percent are found to be typical, i.e., certainly well within the often quoted factor‐of‐two accuracy that has long been recognized for these models. However, estimates of concentrations that occur at a specific time and site, are poorly correlated with actually observed concentrations and are much less reliable. 

• Bowne, N.E. and R.J. Londergan, 1983. Overview, Results, and Conclusions for the EPRI Plume Model Validation and Development Project: Plains Site. EPRI EA–3074. Electric Power Research Institute, Palo Alto, CA. 

• Moore, G.E., T.E. Stoeckenius and D.A. Stewart, 1982. A Survey of Statistical Measures of Model Performance and Accuracy for Several Air Quality Models. Publication No. EPA–450/4–83–001. Office of Air Quality Planning & Standards, Research Triangle Park, NC. 

www.cppwind.comwww.cppwind.com

Perfect Model

24

MONITORED CONCENTRATIONS

AE

RM

OD

CO

NC

EN

TRAT

ION

S 100

1000

-

-

www.cppwind.comwww.cppwind.com

Monitored vs Modeled Data:Paired in Time and Space

AERMOD performance evaluation of three coal-fired electrical generating units in Southwest IndianaKali D. Frost Journal of the Air & Waste Management Association Vol. 64, Iss. 3, 2014

www.cppwind.comwww.cppwind.com

Probability analyses of combining background concentrations with model-predicted concentrationsDouglas R. Murray, Michael B. Newman Journal of the Air & Waste Management Association Vol. 64, Iss. 3, 2014

SO2 Concentrations Paired in Time & Space

www.cppwind.comwww.cppwind.com

Probability analyses of combining background concentrations with model-predicted concentrationsDouglas R. Murray, Michael B. Newman Journal of the Air & Waste Management Association Vol. 64, Iss. 3, 2014

SO2 Concentrations Paired in Time Only

www.cppwind.comwww.cppwind.com

AERMOD’s Evaluation

www.cppwind.comwww.cppwind.com

Are We Using the Model Correctly?

Temporal matching is not justifiable

Perfect model            AERMOD

www.cppwind.comwww.cppwind.com

Pairing AERMOD and Monitored Values

www.cppwind.comwww.cppwind.com

Probability of Two Unusual Events Happening at the Same Time

www.cppwind.comwww.cppwind.com

Positively Skewed Distribution

http://www.agilegeoscience.com

www.cppwind.comwww.cppwind.com

24‐hr PM2.5 Observations 

Evaluation of the SO2 and NOX offset ratio method to account for secondary PM2.5 formationSergio A. Guerra, Shannon R. Olsen, Jared J. Anderson Journal of the Air & Waste Management Association Vol. 64, Iss. 3, 2014

Percentile BGg/m3

Max. Availablebased on NAAQSg/m3

50th 7.6 27.4

60th 8.7 26.3

70th 10.3 24.7

80th 13.2 21.8

90th 16.9 18.1

95th 22.6 12.4

98th 29.9 5.1

99.9th 42.5 Exceeds!

www.cppwind.comwww.cppwind.com

Combining 99th percentile AERMOD and BG 

P (AERMOD and BG) = P(AERMOD) * P(BG)99% percentile is 1 out of 100 days, or

= (0.01) * (0.01)  = 0.0001 = 1 out of 10,000 days

Equivalent to one exceedance every 27 years!= 99.99th percentile of the combined distribution

www.cppwind.comwww.cppwind.com

Combining 99th AERMOD and 50th BG P (AERMOD and BG) = P(AERMOD) * P(BG)

= (1‐0.99) * (1‐0.50)

= (0.01) * (0.50)

= 0.005 = 1 of 200 daysEquivalent to 1.8 exceedances every year= 99.5th percentile of the combined distribution

Evaluation of the SO2 and NOX offset ratio method to account for secondary PM2.5 formationSergio A. Guerra, Shannon R. Olsen, Jared J. Anderson Journal of the Air & Waste Management Association Vol. 64, Iss. 3, 2014

www.cppwind.comwww.cppwind.com

Monte Carlo Approach• Pioneered by the Manhattan Project scientists in 1940’s• Technique is widely used in science and industry• EPA has approved this technique for risk assessments • Used by EPA in the Guidance for 1‐hour SO2 Nonattainment 

Area SIP Submissions (2014)

www.cppwind.comwww.cppwind.com

Emission Variability Processor• Assuming fixed peak 1‐hour emissions on a continuous basis will 

result in unrealistic modeled results • Better approach is to assume a prescribed distribution of emission 

rates• EMVAP assigns emission rates at random over numerous iterations• The resulting distribution from EMVAP yields a more representative 

approximation of actual impacts• Incorporate transient and variable emissions in modeling analysis • EMVAP uses this information to develop alternative ways to 

indicate modeled compliance using a range of emission rates instead of just one value 

www.cppwind.comwww.cppwind.com

Solutions to AERMOD’s  LimitationsAdvanced Modeling Technique

Traditional Modeling Technique

Building Dimensions EBD Generated BPIP Generated

BackgroundConcentrations

Combine AERMOD’s concentration with the 50th % observed

Tier 1: Combine AERMOD’s concentration with max. or design value (e.g., 98th % observed for SO2)Tier 2: Combine predicted and observed values based on temporal matching (e.g., by season or hour of day).

Variable emissions Use EMVAP to account for variability

Assume continuous maximum emissions

www.cppwind.comwww.cppwind.com

Conclusion• BPIP/PRIME commonly overestimate downwash effects 

• Temporal pairing of predicted and observed values is unjustified

• Advanced methods can be used to overcome these limitations– 50th percentile bkg– EMVAP– ARM2

www.cppwind.comwww.cppwind.com

Ron Petersen, PhD, CCM Sergio A. Guerra, PhDrpetersen@cppwind.com sguerra@cppwind.comMobile: +1 970 690 1344 Mobile: + 612 584 9595

www.sergioaguerra.com

CPP, Inc.2400 Midpoint Drive, Suite 190

Fort Collins, CO 80525+ 970 221 3371

www.cppwind.com @CPPWindExperts

Thanks!