Prof. S. Ben-Yaakov , DC-DC Converters [3- 1] Magnetics Designdcdc/slides/DC-DC part 3_Double...

Post on 14-Mar-2018

241 views 2 download

transcript

1

Prof. S. Ben-Yaakov , DC-DC Converters [3- 1]

Magnetics Design

3.1 Important magnetic equations3.2 Magnetic losses3.3 Transformer

3.3.1 Ideal transformer (voltages and currents)3.3.2 Equivalent circuit of transformer

(coupling, magnetization current)3.3.3 Design of transformer

3.4 Inductor design

Prof. S. Ben-Yaakov , DC-DC Converters [3- 2]

;dtdBnA

dtdnV e=Φ=

HB

∆∆=µ

Φ - magnetic flux Weber [ Wb ]

B - flux density ]T[TeslamWb

2 =

V - voltage [ V ]

Also : Gauss [ G ] 1T = 10,000 G

B

H

BDC

HDC

ΦAe

Faraday’s law

2

Prof. S. Ben-Yaakov , DC-DC Converters [3- 3]

Ampere’s law

H - magnetic field [ A/m ]

∫ ⋅= InHdl

eHIn l⋅=⋅

e

InHl

⋅= [ A/m ]

In

el

Prof. S. Ben-Yaakov , DC-DC Converters [3- 4]

Magnetic losses ~∆B

“Good number” = 100mW/cm3 =100KW/m3

P3cmmW

B∆

Magnetic losses

B

H

BDC

HDC

3

Prof. S. Ben-Yaakov , DC-DC Converters [3- 5]

“Good number”=100mW/cm3=100 kW/m3

Magnetic Losses

Prof. S. Ben-Yaakov , DC-DC Converters [3- 6]

Magnetic losses ~∆B

“Good number” = 100mW/cm3 =100KW/m3

P3cmmW

B∆

Magnetic losses

B

H

BDC

HDC

4

Prof. S. Ben-Yaakov , DC-DC Converters [3- 7]

Magnetic Losses

Prof. S. Ben-Yaakov , DC-DC Converters [3- 8]

Curves for constant loss: 500mW/cm3

Figure of merit B*fEach material has optimum operating temperature (minimum loss)

Magnetic Losses

5

Prof. S. Ben-Yaakov , DC-DC Converters [3- 9]

Transformer currents

n1 n2

I1I2

For ideal transformer 2211 InIn =1

2

2

1nn

II=

At any given moment 2211 InIn =

I1,I2 opposite direction.

No magnetic energy stored due to useful currents I1, I2 (they cancel each other)

n1 n2

I1 I2

Prof. S. Ben-Yaakov , DC-DC Converters [3- 10]

Transformer voltages

φ

dtdnV 1

11φ=

dtdnV 2

22φ=

21gminAssu φ=φ

dtd

dtd 21 φ=φ

2

1

2

1nn

VV

=

n1 n2V1 V2

6

Prof. S. Ben-Yaakov , DC-DC Converters [3- 11]

Since each winding also represents an inductance, therefore for any winding 0=nVPermissible voltages: AC only on any winding

S1

V

S1

S2 S2

S1

V

S1

V

S2S2

S1S2

S1S2

t

t

t

A

B

C

Voltages

Prof. S. Ben-Yaakov , DC-DC Converters [3- 12]

Equivalent circuit (preliminary)

2mm nLL

12=

∞→LIdeal transformer

Ideal

1:n

Lm1

Llkg1

Ideal

1:n

Lm2

Llkg1

Ideal

1:n

Lm1

Llkg2

7

Prof. S. Ben-Yaakov , DC-DC Converters [3- 13]

Leakage inductance

I2V2

I1V1 n2

n1

Leakage inductance is theuncoupled magnetic flux

1:nLkg1

Lm1

ideal

Lkg2

Relationship between Llkg, M and k (coupling coefficient).

21 LLkM ⋅=)k1(LL 1m1lkg −≅

21lkg2lkg nLL ⋅≅

Leakage

Prof. S. Ben-Yaakov , DC-DC Converters [3- 14]

1:nLlkg1

Lm1

ideal

Llkg2

Vo

Llkg1

Lm1

L'lkg2

V'o 22lkg

2lkg nL

L =′

2o

o nVV =′

Leakage

8

Prof. S. Ben-Yaakov , DC-DC Converters [3- 15]

Magnetization Current

Vint

Vo

t

I2t

Imt

I1t

Ideal

1:n

Lm1

Llkg2

RI2

Vo

I1

ImVin

Prof. S. Ben-Yaakov , DC-DC Converters [3- 16]

Transformer

1. Bmax ( could be symmetrical or asymmetrical )2. Bmax < Bsat

3. In most case ( high frequency ) Bmax limit by magnetic losses.

dtdBAn

dtdnV e111 =Φ

=

I2V2

I1V1 n2

n1

H

B

B sat-

Bsat+

B max+

∆ΒBmax-

9

Prof. S. Ben-Yaakov , DC-DC Converters [3- 17]

Symmetrical operation

∫= VdtAn1B

e1

−+ = maxmax BB

e1

onmmax An

tVB2B ==∆

{ }emax

onm1 AB2

t,Vn =

B

Vm

Ts

Bmax-

Bmax+

ton

V1

s2Ttone1 f

1~t~An Son→

Prof. S. Ben-Yaakov , DC-DC Converters [3- 18]

Skin effect

depthskin−δ

f72)mm( =δ

Hzinf

δ 1RR

DC

AC >

DC FrequencyHigh

10

Prof. S. Ben-Yaakov , DC-DC Converters [3- 19]

Skin Effect Solutions

Litz wire

Tape

Prof. S. Ben-Yaakov , DC-DC Converters [3- 20]

Proximity effect

I

I

Current crowding due to magnetic fields

11

Prof. S. Ben-Yaakov , DC-DC Converters [3- 21]

[ ]k

nwnwA 22A1A

w1

⋅+⋅=

k - filling factor k<1

JI

w rms1A1=

J - current density A/m2

J ≅ 4.5 A/mm2

12

12 I

nnI =

Aw - winding area

AwwA

Aw

Prof. S. Ben-Yaakov , DC-DC Converters [3- 22]

2JkIn

A rms11w ⋅=

rms1

w1 I2

JkAn⋅

=

{ }emax

on11 AB2

t,Vn =

{ }emax

on1

rms1

w

AB2t,V

2IJkA

=⋅

{ }{ }JkB2

I2t,VAAAmax

rms1on1ewp

⋅==

{ }JkB

I2t,VA rms1on1

p ⋅∆⋅

=

{ }JkBfI2D,V

As

1on1p

rms

⋅∆⋅⋅

=

Ap

12

Prof. S. Ben-Yaakov , DC-DC Converters [3- 23]

Transformer design stages

1. Calculate Ap

2. Look for core3. Calculate n1 by:4. Calculate n2

{ }JkBfI2D,V

As

1on1p

rms

⋅∆⋅⋅

=

In symmetrical operation∆B = Bmax

+ - Bmax-

In asymmetrical operation∆B = Bmax - 0

{ }emax

onm1 AB2

t,Vn =

Prof. S. Ben-Yaakov , DC-DC Converters [3- 24]

Inductor design

Need to store energy( in transformer n1·I1= n2·I2 )

roµµ=µµo - air (vacuum) permeabilityµr - relative permeability

I

L

B

13

Prof. S. Ben-Yaakov , DC-DC Converters [3- 25]

µo = 1.26·10-6m

Henry

If µ is high B will reach quickly Bsat

Need to slower µ

B

HHo

<2rµ

2rµ

1rµ

1rµBo

µr of ferrites ∼ 2000 - 4000

B = µH

Permeability

Prof. S. Ben-Yaakov , DC-DC Converters [3- 26]

Same Φ magnetic lines in ferromagnetic material and in air.

eg ll <<

eeg lll ≅+

Discreteair gap

Φµo

µr

el

gl

Distributedair gap

Gaps

14

Prof. S. Ben-Yaakov , DC-DC Converters [3- 27]

Current crowding due to magnetic fields

RAC high around gap

Current Crowding

Prof. S. Ben-Yaakov , DC-DC Converters [3- 28]

Φ = constant B ≅ constant

og

BHµ

=m

mBHµ

=

ggeme HHHnI lll +==ogB

meB

eHµ

=ll

l

eg ll <<

eeg lll ≅+

el

gl

Inductance with Gap

15

Prof. S. Ben-Yaakov , DC-DC Converters [3- 29]

g

eo

a

m

m

e

BBBH

l

=

o

g

m

ee

BBHµ

=ll

l

Dividing out le and defining HB

e =µ

Inductance with Gap

Prof. S. Ben-Yaakov , DC-DC Converters [3- 30]

µ

g

eo

me

111

l

l

µ

+µµ

=µµ

g

eo

ormore

111

l

l

+

µ=

µ

g

ermre

111

l

l

µ

µ+

g

erm

rmg

e

re

1

l

l

l

l

rmg

e

g

erm

re

µ+

µ

l

l

l

l

rmg

eIf µ<l

l

≈µ

g

ere

l

l

Gap Calculation

16

Prof. S. Ben-Yaakov , DC-DC Converters [3- 31]

dtdILV =

dtdnV Φ=

dtdInnA

dtdHnA

dtdBnA

dtdn

eeeel

µ=µ==Φ

dtdn

dtdIL Φ

=L-?

dtdIAn

dtdIL

e

e2

l

µ=

e

e2AnLl

µ=

Inductance

Prof. S. Ben-Yaakov , DC-DC Converters [3- 32]

2

2

1

2

1nn

LL

=

Inductor design

B

H

Bmax

Two windings on same core

17

Prof. S. Ben-Yaakov , DC-DC Converters [3- 33]

dtdn

dtdIL Φ

=

∫∫

=

maxpk B

0e

I

0dt

dtdBnAdt

dtdIL

L Ipk = nAeBmax

maxe

pk

BALI

n =

max

pke nB

LIA =

rms

wI

JkAn =

quick design and check

Saturation Limits

Prof. S. Ben-Yaakov , DC-DC Converters [3- 34]

JkBILI

AAAmax

rmspkwep ==

2rmspk LIILI ≈

2LIstoredEnergy

2=

Air gapped core Design1. Calculate Ap

2. Choose a core3. Iterate4. Calculate ( or increase gap until L is as required ) gl

Ap

18

Prof. S. Ben-Yaakov , DC-DC Converters [3- 35]

Cores

Transformer core Inductor core

air gap

Prof. S. Ben-Yaakov , DC-DC Converters [3- 36]

1. E - core

2. TOROID

3. ARENCO 4. POT

Cores

19

Prof. S. Ben-Yaakov , DC-DC Converters [3- 37]

Commercial cores

Prof. S. Ben-Yaakov , DC-DC Converters [3- 38]

Distributed gap core

turnH

A yL = )

turns1000H

sometime( y

L for n turns: L2 AnL ⋅=

The concept of AL

Distributedair gap

20

Prof. S. Ben-Yaakov , DC-DC Converters [3- 39]

AL

Prof. S. Ben-Yaakov , DC-DC Converters [3- 40]

Toroid Data

21

Prof. S. Ben-Yaakov , DC-DC Converters [3- 41]

1 Amp/m =79.5 Oe

L decreases with DC current !

Permeability change

Prof. S. Ben-Yaakov , DC-DC Converters [3- 42]

These curves are measured by feeding ac signals.If the current is composed of DC + ripple, core loss is due only to ripple component !

DC bias tend to increase loss

“Good number”=100mW/cm3

Misleading notations !∆B NOT B

Losses

22

Prof. S. Ben-Yaakov , DC-DC Converters [3- 43]

“Hot Spot” - Critical parameter

Temp. Rize

Prof. S. Ben-Yaakov , DC-DC Converters [3- 44]

Hanna Curve

orHmaxB

eV

2LImaxHB

maxB1

eV

2LIH

µµ=µ=

=

=

maxBeAelLInI

Hn

maxBeApkLIH

Hn

maxBeApkLI

n

=

=

=

23

Prof. S. Ben-Yaakov , DC-DC Converters [3- 45]

Hanna Curve

Prof. S. Ben-Yaakov , DC-DC Converters [3- 46]

Core Size Selection

24

Prof. S. Ben-Yaakov , DC-DC Converters [3- 47]

Basic Design of Distributed Gap Core

)nI(fel

1. Calculate LI2

2. Look up manufacturer data 3. Select Core

4. Calculate

5. Check Lmin

6. Calculate losses. Temp rise and and

7. Iterate

)(LALn1000

1000=